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Abstract

A theoretical formulation of the stereo correspondence
problem and an algorithm for its solution are described.
One way of characterising the stereo matching problem is
to find a one-to-one locally continuous mapping between
the two eyes' subject to the epipolar geometry. This
abstract formulation unfortunately provides no algorithmic
mechanism with which to obtain the solution. This has
long been recognised and researchers in the field have
been concerned to identify and exploit heuristic continuity
and smoothness constraints to resolve the stereo ambiguity
problem (for a review see Mayhew 1983). One such con­
straint, motivated by psychophysical observation (Burt and
Julsez 1980), is the disparity gradient constraint which
was first exploited heuristically in the PMF stereo algo­
rithm (pollard et al 1985). The disparity gradient con­
straint enforces Lipschitz continuity on the mappings
between the eyes' views, on the surfaces in the scene and
on the depth map. The Lipschitz constant (corresponding
to the limiting disparity gradient) provides a free parame­
ter that can be exploited algorithmically. Accordingly we
also examine how varying the value of the disparity gra­
dient limit effects both the disambiguating power of the
P:MF algorithm, and restricts the range of surface orienta­
tions that can be fused (full details can be found in Pol­
lard et a11985; Pollard 1985).

1. Introduction

Suppose we have a stereo pair of views of n points in
space. The only purely geometrical constraint on match­
ing between the two views is that matches should lie on
corresponding epipolar lines. In principle this would be
enough. For generic views of generic point sets no two
points will lie on the same epipolar and so every point has
a unique match. In practice we do not deal with generic
point sets; quantisation error also forces points into the
same epipolar raster_ Further matching constraints are
thus required for uniqueness.

Objects in the world are usually bounded by continuous
opaque surfaces. If we assume that the observed feature
points lie on such a surface so as to be simultaneously
visible to both eye's we arrive at the ordering constraint
(see: Baker and Binford 1981; Burt and Julesz 1981;
Baker 1982; Mayhew 1983; Yuille and Poggio 1984; Ohta
and Kanade 1985): points on the same epipolar line are in
the same order in both eyes' views. Once again the
matching problem is solved in principle. Points are
matched in left-to-right order along epipolars, starting with
the leftmost in each view. Again this is not sufficient in
practice; the two eyes' views will not cover the same area,
so the leftmost points will not both be available; also extra

unmatchable .noise points will be present. A further con­
straint is required. One possibility is to propagate infor­
mation between rasters exploiting figural continuity
(Mayhew and Frisby 1980, 1981) since continuous edges
in the scene will project to continuous curves in the image
(see also: Baker 1982; Grimson 1983, Ohta and Kanade
1985). Once we have matched one point on such a curve,
we can follow it continuously across rasters (note that a
practical definition of continuity would be required here).

Another between-rasters constraint that has proved useful
is based on the concept of disparity gradient limit (derived
from psychophysical observations: Burt and Julesz 1980a,
1980b; Tyler 1973, 1974, 1975). It is the basis of a suc­
cessful feature based stereo matching algorithm (the PMF
algorithm: Pollard et. ale 1984, 1985; Pollard 1985).
Disparity gradient can be thought of as a simple measure
of continuity, and the disparity gradient limit encapsulates
previous stereo constraints in a strong form. For example,
enforcing a disparity gradient limit of DG<2 requires that
the observed surface be Lipschitz continuous (this is
defined in the Appendix) and not self-occluding; a recent
result by Trivedi & Lloyd (1985) shows that it also
imposes continuity on the mapping between the two eyes'
views. This c~ be considered as an algorithmic descrip­
tion of the continuous and opaque nature of most surfaces
in the world. Some simple transparent self-occluding sur­
faces (e.g. a pair of transparent planes at different depths),
'though not satisfying the disparity gradient limit globally,
can be built up from surfaces patches which do satisfy this
limit locally (this is similar to the concept of a cohesive­
ness discussed by Prazdny 1985). The set of such sur­
faces forms a wider domain in which disparity gradient
limit is still a useful tool for disarnbiguation, and in fact
the PMF algorithm can cope with such lace curtain stere­
ograms (see Pollard et al 1985).

2. Disparity Gradients and Lipschitz Continuity

In this section we will show that an isotropic disparity
gradient limit is only one member of a whole family of
measures of continuity which impose scene-to-view and
view-to-view Lipschitz continuity. In the process we
obtain a simplified proof of the result of Trivedi & Lloyd
(1985) on view-to-view continuity. In §3 the P1v1F stereo
algorithm (pollard et al 1985) which exploits the disparity
gradient constraint will be briefly described.

2.1. Properties of the Disparity Gradient Limit Con­
straint

Let Land R be the left and right views of a given scene
(they could be regions in the image planes, or finite sets
of feature points). If points peL and p'e R have been



matched we write p.....:,p' (this match considered as an
object in itself will be denoted in later sections by Mpp')'
The matching may be many-to-many i.e. many points on
the left could be matched to the same point on the right
and vice versa. Suppose we have a pair of matches p.....:,p'
and q.....:,q'. Their disparity gradient is defined to be

DG = difference in disparities
cyclopean separation

We also use the notation K=DG/2 and when we wish to
refer explicitly to the pair of matches we will write
DG(Mpp" Mqq') for DG. Since the cyclopean image points
are at (p+p')/2 and (q+q')/2 and the associated disparity
vectors are (P'-p) and (q'-q)

DG = K = IICp'-q) - (p--q)11
2 1I(p'-q') + (p--q)1I

where 11-11 denotes the vector norm.

Proposition 1: Suppose the matching L.....:,R satisfies the
DG-limit constraint with DG<2 (K<1), that is, for all
pairs of matches p.....:,p', q.....:,q' we have the inequality

1I(p'-q') - (p--q)1\ ~ K 1I(p'-q') + (p--q)1I

Then the matching L .....:, R is one-to-one.

Proof

Suppose p.....:,p' and q.....:,p'. Substituting into the disparity
gradient constraint gives

lip - qll ~ K lip - qll

and since K<1 this is only possible if p=q. Similarly if
p-sp' and p....."q' then p'=q'.

In the case when the matching is one-to-one, if we restrict
L and R to contain only matched points , then we can
define a one-to-one and onto map f:L.....:,R by f(P)=p' if p
matches with p'. In this case we can prove the Trivedi &
Lloyd (1985) result for the map f.

Proposition 2: Under the assumptions of Proposition 1
the map f is known to exist. This map and inverse r l •

are then Lipschitz of order one with Lipschitz constant

(1+K)
(l-K)

If L is an open set in the image plane (rather than just
a finite set of points) then the map f is a homeomor­
phism from L to R.
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ately gives the same result for the inverse mapping r-.
Continuity of f and its inverse follow automatically when
L is an open set, and then fL.....:,R must be a homeomor­
phism (see appendix for details).

Neither of the above Propositions uses any stereo
geometry. However to relate the results to properties of
the scene we need to consider this geometry. To simplify
the working we will prove the next proposition only
within the framework of small-angle stereo geometry. Let
(x.y,z) be a point in space. and P. p' its two views. If d
is the distance to a fixation point on the forward direction
of the cyclopean eye and I is the interocular distance
then the disparity vector is

p' - p = [8]
and we have the relationships

z=d+ ~o ~] =d¥

valid for small interocular distance and for points close to
the fixation point. The left-right matching process gen­
erates four maps of interest. The two view-to-scene maps
p.....:,(x,y.z) and p'"",:,(x,y,z) , the cyclopean map
(p+p')/2.....,,(x,y ,z) and the depth map (x.y).....:,z. All these
can be shown to be Lipschitz with appropriate constants.
We will state a result only for the depth map.

Proposition 3: Suppose the matching f satisfies the
disparity gradient limit, then the map (x,y).....:,z is
Lipschitz order one with constant DG·dJI. In particu­
lar, if the scene is a surface, it is continuous.

Proof

By substitution the positions and depths of a pair of points
satisfy

IZ2 - zll

which is the Lipschitz condition. It can be considered as
a relationship between disparity gradients in the image and
world gradients. Given a point Xl we call the set of points
x2 such that the associated pair of matches do not satisfy
the disparity gradient limit the excluded region of Xl' If
Xl is the fixation point (d.O.O) the inequality above shows
that the excluded region is the set of points interior to the
right circular cone

1!fVJ) - Aq)1I = lip' _ q'lI ~ 1+Klip - qll
I-K

The symmetry of the disparity gradient constraint immedi-

the disparity gradient constraint gives

lip'-q'lI - IIp--qll ~ Kllp'-q'lI + K11p-qll

and since K<1 we can simplify to get the Lipschitz con­
straint

Proof

Using the inequalities

lIali - IIbll ~ lIa - bll lIa+ bll ~ lIall + IIbli

(Z-d)2 = !i. ·DG (x?- + r)
I

Because this cone is rotationally symmetric about the z­
axis we say that the disparity gradient limit constraint is
isotropic. The condition DG<2 is necessary to ensure that
the surface of this cone is simultaneously visible to both
both eye 's, This is the opacity constraint. However the
opacity constraint in itself does not impose any between
rasters continuity . so we would expect the isotropy of the
DG<2 constraint to be sufficient but not necessary for the
truth of the propositions above . In the next section we
shall see that this is in fact the case.



Another point is worth noting briefly here. Suppose we
observe a cone with axis through our. cyclopean eye, on
which the generators formed by intersection with a verti­
cal plane are drawn. Then points on these generators will
have different left-to-right orders in each eye's view.
Thus the geometry of binocular vision does not impose
any off epipolar ordering constraint as has sometimes been
assumed (Yuille and Poggio 1984).

2.2. Generalised Disparity Gradient Measures

The proofs of Propositions 1 and 2 did not use any pro­
perties other than the fact that the distance function 11-11

was a norm (see Appendix). The results would thus be
true for any other norm defined in the image planes. The
proof of Proposition 3 did require that distance along epi­
polar lines be the usual distance measure (since disparity
in this direction is related directly to depth). Thus if we
can find a norm 11·11 with the property

II [0] II = Ixl

then, using the disparity gradient definition of the last sec­
tion with this new norm, the proofs of all the propositions
will be unchanged. There are many such norms. We
mention here three families:

II ~] "_ = max{lxl. alYI}

II ~] 112 =R +a9

II ~] III = 1Ix11 + allyll

(proofs of the norm property can be found in any analysis
textbook). The constant a allows us to vary the
between rasters strength of the constraint. This is easiest
to see if we consider the boundary of the excluded region
of the fixation point. It is a cone whose cross-section is,
for the norm 11.1100 a flattened diamond, for 11.11 1 a flattened
rectangle, and for 11-112 an ellipse. As a~oo the cross­
section of the excluded region goes to zero. In the limit
a=oo none of the above are norms, and the Propositions
become false. When a=1 norm 11-112 gives the usual dispar­
ity gradient measure. The norm can thus be varied to
give excluded regions of varying shape and cross-sectional
area. This will affect the exact nature of the
between rasters constraint being imposed.

2.3. Conclusions

The disparity gradient limit is a constraint on scene
jaggedness embracing simultaneously the ideas of opacity,
scene continuity, and continuity between views. It is a
sufficient but not necessary condition for these properties
to hold. The concept of continuity employed in the
preceding sections is that obtained by imposing a bound
on the Lipschitz constant. It is argued in the Appendix
that this is the most useful approach in practical situations.

There are whole families of stronger and weaker sufficient
conditions of the same type, of which the usual disparity
gradient limit is the only isotropic example. This isotropy
is not required by the geometry of binocular viewing or to
impose continuity. The human visual system may prefer
the isotropic condition however, because if an object can
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be viewed stereoscopically in one position, then a rotation
about the line of sight does not alter this.

Perhaps more importantly we have a free parameter, the
disparity gradient limit DG, which can be varied over the
range O<DG<2 while still retaining the continuity of the
view-to-view and scene-to-view maps. Taking a value
DG:::O gives a very strong constraint, allowing only nearly
fronto-parallel surfaces (this has been used locally as 'the
basis of a stereo correspondence algorithm, Marr & Pog­
gio 1976). At the other extreme a value DG=2 gives 'the
weakest isotropic Lipschitz constraint which is consistent
with non-self-occlusion of the underlying surfaces. We
are free to choose the value of DG between these two lim­
its, and in the following sections we will show how an
intermediate value of DG supplies sufficient disambiguat­
ing power while imposing a (statistically) weak constraint
on the observable surfaces in the world.

3. The PMF stereo algorithm

The basis for disarnbiguation in the PMF stereo algorithm
(pollard et al 1984, 1985; Pollard 1985) is provided by the
local satisfaction of a moderate disparity gradient limit.
Initial matching strengths are computed for each potential
match (denoted MSpp' for match Mpp') from the sum of
within gradient limit support they receive from other
potential matches in their immediate neighbourhood. The
ubiquitous uniqueness constraint (Man and Poggio 1976,
1979) is then exploited in order to resolve ambiguity on
the basis of these matching strengths.

3.1. Computing matching strengths

Consider the points in one image, the left say. Each point,
for example point p, identified in that image can take part
in a number of matches (eg Mpp" Mpq' etc). For conveni­
ence a circular neighbourhood is defined in the left image
about p. Only those matches associated with points that
lie within this neighbourhood are allowed to contribute
support to each of the possible matches for p, and only
then if the disparity gradient between them is less than a
moderate predetermined limit. Furthermore, in accordance
with the uniqueness constraint only a single match for
each primitive in the neighbourhood is allowed to make a
contribution.

Consider a single pair of points in one image. The range
of disparity difference over which the gradient limit is
satisfied between them increases linearly (but not isotropi­
cally) with their physical separation. Accordingly it was
decided that support should be scaled inversely with rela­
tive proximity. The advantages of alternative scaling fac­
tors are discussed in Pollard (1985).

The matching strength can be expressed more formally as

~ Cij' x DG(Mpp" Mil)
MSpp' = LJ max

i e N(P) aliI S(p, i)

where N(P) is the set of points in the neighbourhood of p.
DG(Mpp" Mil) isa function of the disparity gradient that
exists between match Mpp' and Mil' it has value one if the
gradient is less than the chosen limit and zero otherwise.
S(p, i) is the magnitude of the separation between points p
and i. Cil reflects the goodness of the match between
primitives i and j. In those situations where there is more
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than one match for a single primitive that satisfies the gra­
dient limit, only the stronger contributes to the matching
strength.

3.2. Resolving ambiguity

Uniqueness is enforced via a simple discrete iterative
winner take all procedure. At each iteration those
matches having the highest matching strength for both of
the two image primitives forming them are immediately
chosen as correct, ie matches that are maximal with
respect to both lines of sight are selected. Subsequently,
alternative matches associated with the two primitives that
form each selected match can be eliminated from further
consideration. This allows further matches, not previously
either accepted or eliminated, to be selected as correct
provided that they now have the highest strengths for both
constituent primitives. In practice convergence of this
procedure usually occurs after only 4 or 5 iterations, with
the overwhelming majority of matches being identified at
the first iteration.

this section we shall examine the statistics of stereo pro­
jection in order to show that the restriction on the set of
possible surfaces resulting from the imposition of a
moderate disparity gradient limit is not severe.

Proposition 3 relates gradients in the scene to disparity
gradients in the image. Expressing the world gradient as
tan s and rearranging gives

I
DG = -·tan s

d

Notice how the magnitude of the disparity gradient is
scaled with respect to the viewing parameters I and d.
Generally, for viewing systems approximating that of the
human visual system, d is large in comparison to I and the
vast majority of disparity gradients in the image will be
small. Following Arnold and Binford (1980), also
reponed by Kass (1984), it is possible to derive a proba­
bility density function for disparity gradient based upon
the assumption that surface orientation is uniformly distri­
buted over the gaussian sphere (details in Pollard 1985).
That is

where

costtan'( DG ))a
a

t?+DG2

In figure 1 the cumulative density function is plotted for a
range of d values representative of the distances for which
binocular stereo is considered to be an important depth
cue in human vision. The inter-ocular separation I is
assumed to be 6.5cm. Inspection of figure 1 clearly shows
that at any reasonable viewing distance the majority of
disparity gradients will be small. For example, less than
10% of world surfaces viewed at more than 26cm will
present with disparity gradient in excess of 0.5. Hence
one can argue that to enforce a disparity gradient well
~lo:v the theoretical limit (of 2) imposes negligible res­
tnctions on the worlds that can be fused by the stereo
algorithm.
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for DG in the range 0 to infinity.

4. Statistics of Projection

In practice the selection of a suitable limiting disparity
gradient in PMF is doubly constrained. On the one hand
the chosen limit should provide sufficient generality, ie it
should admit as wide a range of surfaces as possible. And
on the other it should provide sufficient disambiguating
power to resolve any ambiguity that may be present. In

3.3. Support

It is important to emphasise the fact that PMF is only
interested in the quantity of within-disparity gradient limit
support that exists for a particular match. The extent to
which the disparity gradient limit is violated in the neigh­
bourhood of a candidate match does not directly effect
PMF's selection procedure. Alternatively, it would be pos­
sible to reduce the strength of a match in accordance with
the number of points over the neighbourhood that did not
possess matches that satisfied the gradient limit. However
it cannot be assumed that a moderate disparity gradient
limit will be satisfied everywhere. The disparity gradients
that exist across depth shears, for example, will generally
be large. Fortunately the satisfaction of the gradient limit
that exists to either side of the discontinuity is generally
sufficient to resolve ambiguity in their vicinity.

3.4. Consistency

A further point to note is that within-disparity gradient
support is sought independently from all possible matches
in the neighbourhood of the match under consideration.
Hence it is possible that two or more matches that give
within-disparity gradient limit support might not them­
selves share a within-limit disparity gradient. An alterna­
tive approach would be to require that all matches that
give support be mutually consistent, that is the disparity
gradient limit must be satisfied amongst them. However
the computational overheads involved in recovering the
best such score are prohibitive even for quite small neigh­
bourhoods. Hence this requirement is relaxed in the design
of PMF for reasons of computational efficiency. The effect
of this simplification is illustrated below.



5. Disambiguation

So far it has been demonstrated that the binocular projec­
tions of most planar and many jagged surfaces will
present small disparity gradients almost everywhere (given
always that interocular separation is small with respect to
viewing distance). Consequently, assuming some cohesive­
ness of the world, the disparity gradients that exist
between the correct matches of the image features that
describe the structure of the viewed surfaces will almost
always be within a moderate limit But, as implied above,
disambiguation also needs to rely upon there being a low
probability for this limit to be satisfied between incorrect
matches (also called ghosts for convenience) of the same
image features.

This section presents the results of a simple computational
experiment designed to illustrate the effect on disambi­
guating power of varying the magnitude of the limiting
disparity gradient. For this purpose it is convenient to con­
sider the matching problem associated with patterns of
random point features (dots generated to 32 bit floating
point resolution) of a uniform density. Whilst this restric­
tion is not entirely satisfactory, the ambiguity problem
associated with dot patterns makes them typical of some
of the most problematic textures that exist in natural
imagery.

5.1. Strength Ratios

For our purposes disambiguating power is defined as the
extent to which it is possible to distinguish those matches
that are correct from their associated ghosts. The ratio of
incorrect to correct match strength provides a useful
metric in this regard. If this ratio is generally small the
resulting disambiguation power will be sufficient to
resolve the vast majority of correct matches even in the
presence of large quantities of noise and/or close to
disparity discontinuities. Experimental results are
presented in the form of a frequency distribution compiled
as a result of a large number of independent trials. At
each trial:

(i) a single dot is chosen from a random dot pattern

(ii) the strength of its correct match is computed by
matching the dot with the same dot in an identical
dot pattern

(iii) the strength of an incorrect match is computed by
matching the dot with a dot in an independent dot
pattem

(iv) their ratio is computed

(v) this single contribution is added to the distribution

The magnitude of the strength of a correct match, given
by (ii), is equivalent for all situations in which the gra­
dient limit is satisfied amongst the correct matches, ie
where the word projects as a suitable Lipschitz disparity
surface. This follows from the fact that in such situations
the matching strength of P:MF is only dependent upon the
projection into the left image. For noiseless data, the
matching strength for a correct match (CS) will receive a
single contribution from each dot in the neighbourhood.

CS = 1:, _l_
ie N S(Z)
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where N is the set of dots in the neighbourhood and S(z) is
the physical separation of dot i.

For an incorrect match only those dots in the neighbour­
hood that have matches that satisfy the gradient limit by
chance are allowed to contribute to the matching score.

IS = 1:, IND?<O
ieN S(z)

where lNDG(i) is a boolean that is satisfied only if there
exists a match for dot i that satisfies the disparity gradient
limit with respect to the match under consideration.

Figure 2 presents the normalised frequency distribution of
strength ratios (ISleS) (obtained over 1000 independent
trials) for several values of limiting disparity gradient. The
random dot patterns used were of uniform density with 0.1
dots per unit area [pixel] and the neighbourhood size was
of 7 units radius. A vertical matching range of one unit
was allowed for matching each dot in the neighbourhood .
In the absence of noise the maximum possible ratio mag­
nitude is 1. Hence good disambiguating power is charac­
terised by a distribution of strength ratios clustered about
some value much less than 1. This is the case where the
disparity gradient is of moderate size, ie in the range
between 0.5 and 1 (even within this range considerably
better disambiguation power is achieved with the lower
limit) . Beyond such values the degree of deformation
allowed between the two images (without affecting the
matching strength) increases rapidly, and thus the disambi­
guation power provided falls off equally rapidly. A dispar­
ity gradient limit of 2 (approximated by a limit of 1.99),
the physical limit along epipolar lines, provides almost no
disambiguating power when used in this way; almost all
incorrect matches obtain the same quantity of within­
gradient support as their associated correct matches.

Fr equency
Dot Density 0 .1
Neiqhbourhood 7

-+--==::::::::::'--====:::::'-__':::::=::::S::::---":"", rs /cs

Figure 2

5.2. Mutual Consistency

It is also possible to examine the effect on the matching
strength computation of P:MF of the decision to relax the
mutual consistency constraint Matching strengths for
correct matches remain the same as by definition correct
matches defined here will all mutually satisfy the gradient
limit over the extent of the neighbourhood . For incorrect
matches, however, it is necessary to search the set of pos­
sible matches for each dot in the neighbourhood for the
mutually consistent subset that maximises the matching
strength, the initial set being limited to those matches, of
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(c)
Figure 5

(b)

(a)

6. Examples of Performance

Two examples of the performance of the PMF algorithm
on natural scenes are given here. The adopted disparity
gradient limit is that reported by Burt and Julesz
(1980a,1980b) for the human visual system, ie DG=1.
Note that in terms of generality and disambiguating power
this provides a fairly liberal constraint.

The stereogram given in figure 4(a) is representative of a
simple industrial scene. Each image is 256 pixels square.
Edge-like primitives, identified with a single scale (0=2)
Canny edge detector (Canny 1983) are displayed in (b),
with intensity used to code edge contrast. As edge primi­
tives are represented as pixels the constraint provided by
epipolar geometry is implemented by limiting search to
corresponding rasters in the two images (vertical dispari­
ties between the two images are always less than half a
pixel). Potential matches are limited to a disparity range
of ±30 pixels and are required to be of the same contrast
polarity and of a similar orientation. The actual limit on
reorientation is given by the magnitude of the disparity
gradient limit. Hence near vertical edge segments are
allowed to reorient more so than horizontal ones. Disparity
data recovered from matches selected by PMF (with a
neighbourhood of radius 10 pixels) is displayed in (c) as a
cyclopean image with intensity used to approximate rela­
tive depth (brighter points are closer to the imaging dev­
ice). Unmatched points are not displayed.

Figure 3

(b)

Fre uency

(c)
Figure 4

(a)

K-0.5

Mutual sa.ti.lacuon

each dot, that satisfy the gradient limit with respect to the
match in question. Frequency distributions for mutually
consistent matches are displayed in figure 3 for gradient
limits 0.5, 1 and 1.5 (1.99 being too expensive to com­
pute).

Some improvement, for each chosen value of the disparity
gradient limit, is observed. However the overall trend of
disambiguating power decreasing with the magnitude of
the gradient limit still occurs. In practical terms the actual
improvement in disambiguation power that is gained for a
small disparity gradient limit, such as 0.5, is not appreci­
able when compared with the computational simplicity of
computing matching strengths without insisting upon con­
sistency. Enforcing mutual consistency in this way is
combinatorially explosive, being closely related to the
max clique problem (which is known to be NP complete;
see Aho, Hopcroft and Ullman 1974).



A very different scene is the subject of the stereogram in
figure 5(a). It portrays a rocky terrain viewed from above,
presenting therefore a similar task to that solved by human
operators in the field of photogrammetry from aerial pho­
tographs. The images are just 128 pixels square. All other
parameters are the same as those used to process figure 4.
The edge-like primitives in (b) are provided by a single
high frequency (c.o=5) Marr-Hildreth operator (Marr and
Hildreth 1980). Disparity data is presented in (c) with
intensity coding depth.

7. Concluding Comments

This paper has explored the theoretical and practical
justifications for the use of the disparity gradient con­
straint in stereo matching. It has been shown that pro­
vided the gradient limit is less than 2 Lipschitz continuity
is enforced between the stereo images and furthermore
both the world and the cyclopean disparity map will be
Lipschitz (with respect to a cyclopean coordinate frame).
The selection of a suitable gradient limit is subject to
pragmatic constraints. It has been shown that a moderate
gradient limit (between 0.5 and 1) captures the statistics of
small baseline stereo projection and provides considerable
disambiguating power. The PMF stereo algorithm exploits
the local satisfaction of the gradient limit in a simple and
computationally attractive fashion. The strength of each
match could, on a suitable computer architecture, be com­
puted entirely in parallel and because of the considerable
disambiguating power provided by the gradient limit in a
single pass over the images.
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Appendix: Norms, Lipschitz conditions, and Continuity

A norm IHI on a vector space V is a map

V~R:a~lIall

with the three properties

lIall ~ 0

IlAaIl = IAI lIall

lIa+ bl! s lIall + Ilbll

for all a,beV and AER. A function fV~W is Lipschitz
order a, (0<0:<1) constant K if

l!fty) - ftx)lIw s K lIy -x II~

for all x,ye V. Such a Lipschitz function is always con­
tinuous since for any £>0 by putting &=(ElK)lIa we have

lfu) - f{x)lIw s e



whenever

lIy - xliv:::; 8

A function is a homeomorphism if it is one-to-one and it
and its inverse are continuous, and hence if it and its
inverse are Lipschitz.

If f is Lipschitz order 1 constant K then if it is also
differentiable its gradient has magnitude bounded by K.
This Lipschitz condition can thus be regarded as a meas­
ure of jaggedness intermediate between continuity and
bounded differentiability.

In practical situations we are working with functions
defined only at a finite set of points. For such functions
the notions of continuity and differentiability are meaning­
less. We can however calculate the Lipschitz constant K
and this will give us a simple measure of continuity. In
practice continuity always means a particular choice of
bound on K. For example we may have a set of image
points on adjacent screen rasters. We will say that they
form a continuous curve if the change in position between
rasters is less than, say, 2 pixels. This is a Lipschitz con­
dition order 1 constant 2. The mathematical definition of
continuity is not useful here since any finite set of points
lies on some continuous curve.
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