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Abstract

This paper provides an overview of the Sheffield AIVRU
3D vision system for robotics. The system currently sup
ports model based object recognition and location; its
potential for robotics applications is demonstrated by its
guidance of a UMI robot arm in a pick and place task.
The system comprises:

1) The recovery of a sparse depth map using edge
based passive stereo triangulation.

2) The grouping, description and segmentation of edge
segments to recover a 3D description of the scene
geometry in terms of straight lines and circular arcs.

3) The statistical combination of 3D descriptions for
the purpose of object model creation from multiple
stereo views, and the propagation of constraints for
within view refinement

4) The matching of 3D wireframe models to 3D scene
descriptions, to recover an initial estimate of their
position and orientation.

The system is currently being developed to allow robot
navigation by utilising visual feedback. The idea is to
exploit the temporal coherence that exist in a sequence of
images in order to provide quickening strategies.

1. Introduction.

The following is a brief description of the system. Edge
based binocular stereo is used to recover a depth map of
the scene from which a geometrical description compris
ing straight lines and circular arcs is computed. Scene to
scene matching and statistical combination allows multiple
stereo views to be combined into more complete scene
descriptions with obvious application to autonomous navi
gation and path planning. Here we show how a number of
views of an object can be integrated to form a useful
visual model, which may subsequently be used to identify
the object in a cluttered scene. The resulting position and
attitude information is used to guide the robot arm.

Figure 1 illustrate our system at work. A pair of Pana
sonic WV-CD50 CCD cameras are mounted on an adju
stable stereo rig. Here they are positioned with optical
centers approximately 15cm apart with asymmetric con
vergent gaze of approximately 16 degrees verged upon a
robot workspace some 50cm distant. The 28mm Olympus
lens (with effective focal length of approximately
18.5mm) subtends a visual angle of about 27 degrees. The
system is able to identify and accurately locate a modelled
object in the cluttered scene. This information is used to
compute a grasp plan for the known object (which is
precompiled with respect to one comer of the object
which acts as its coordinate frame). The UMI robot which
is at a predetermined position with respect to the viewer
centered coordinates of the visual system is able to pick

up the object

The system is a contmumg research project the scene
description is currently being augmented with surface
geometry and topological information. We are also explor
ing the use of predictive feed forward to quicken the
stereo algorithm. The remainder of the paper will describe
the modules comprising the system in more detail.

Figure 1. A visually guided robot arm.



a
Figure 2. a, b, Stereo images
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Figure 3. a, b, Edge maps

2. PMF: The recovery of a depth map.

The basis is a fairly complete implementation the Canny
edge operator! applied to two images obtained from the
CCD cameras (Figure 2). The images are 256x256 with 8
bit grey level resolution. In the camera calibration stage, a
planar tile containing 16 squares equally spaced in a
square grid was accurately placed in the workspace at a
position specified with respect to the robot coordinate sys
tem such that the orientation of the grid corresponded to
the x and y axes. The position of the comers on the cali
bration stimulus were measured to within 15 microns
using a Steko 1818 stereo comparator. Tsai's calibration
method was used to calibrate each camera separately. We
have found errors of the same order as Tsai reported
which are sufficiently small for the purposes of stereo
matching. The camera attitudes are used to transform the
edge data into parallel camera geometry to facilitate the
stereo matching process. To recover the world to camera
transform the calibration images are themselves used as
input to the system, ie are stereoscopically fused and the
geometrical description of the edges and vertices of the
squares statistically combined. The best fitting plane, the
directions of the orientations of the lines of the grid
corresponding to the x and y axes, and the point of their
intersection gives the direction cosines and position of the
origin of the robot coordinate system in the camera coor
dinate system. The use of the geometrical descriptions
recovered from stereo as feedback to iterate over the esti
mates of the camera parameters is a project for the future.

b

Currently a single scale Canny operator with (J = 1 pixel
is used (Figure 3). The non maxima suppression which
employs quadratic interpolation gives a resolution of 0.1
of a pixel (though dependent to some extent upon the
structure of the image). After thresholding with hysteresis
(currently non adaptive), the edge segments are rectified
(Figure 4) so as to present parallel camera geometry to the
stereo matching process. This also changes the location of
the centre of the image appropriately, allows for the
aspect ratio of the CCD array (fixing the vertical and
stretching the horizontal) and adjusts the focal lengths to
be consistent between views.

Camera calibration returns good estimates of the optical
centre, focal length and orientation of each camera. This
original geometry is illustrated in Figure 4 behind the
interocular axis OPr' The point at which the principal
axis of the camera intersects the image plane is denotedP,
and Pr for the left and right hand cameras respectively.
Not that (i) the principal axes need not meet in space
(though it is advantageous if they almost do), and (ii) the
focal lengths are not necessarily equal. It is desirable to
construct an equivalent parallel camera geometry. For con
venience this is based upon the left camera; the principal
axis of the imaginary left camera 0 Q, is chosen to be of
focal length F, perpendicular to OfJ" and to be coplanar
with OrO,P, (as is the x axis of the image plane). An
identical imaginary camera geometry is constructed for the
right camera (ie OQ, and O;Qr are parallel) . Note that
O;Qr need not be coplanar with O{),pr' For pictorial sim
plicity the new coordinate frames are shown in front of



the interocular axis. Points on the original image planes
can now be projected through the optical centres of each
camera onto the new and imaginary image planes. With
the result that corresponding image points will appear on
corresponding virtual rasters. For the sake of economy and
to avoid aliasing problems this transformation is applied to
edge points rather than image pixels themselves.

Figure 4. Parallel Camera Geometry.

Figure 5. The depth map. displayed with respect to the left
image . with disparities coded by intensity (near-dark far
light). The total range of disparities in the scene was
approximately 35 pixels from a search window of 200 pix
els. PMF is a neighbourhood support algorithm and in
this case the neighbourhood was 10 pixels radius. The
limiting disparity gradient employed in PMF was 0.5. The
iteration strategy used a conservative heuristic for the
identification of correct matches. and their scores were
frozen. This effectively removes them from succeeding
iterations and reduces the computational cost of the algo
rithm as it converges to the solution. 5 iterations were
sufficient.

The two edge maps are and stereoscopically combined to
form a depth map (Figure 5). The P:MF2• 3 stereo algo
rithm uses the disparity gradient constraint to solve the
stereo correspondence problem. The parallel camera
geometry allows potential matches to be restricted to
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corresponding rasters. Initial matches are further restricted
to edge segments of the same contrast polarity and of
roughly similar orientations (determined by the choice of a
disparity gradient limit). Matches for a neighbouring
point may support a candidate match provided the dispar
ity gradient between the two does not exceed a particular
threshold. Essentially, the strategy is for each point to
choose from among its candidate matches the one best
supported by its neighbours .

The disparity gradient limit provides a parameter for con
trolling the disambiguating power of the algorithm. The
theoretical maximum disparity gradient is 2.0 (along the
epipolars), but at such a value the disambiguating power
of the constraint is negligible. False matches frequently
receive as much support as their correct counterparts.
However, as the limit is reduced the effectiveness of the
algorithm increases and below 1.0 (a value proposed as
the psychophysical maximum disparity gradient by Burt
and Julesz"), we typically find that more than 90% of the
matches are assigned correctly on a single pass of the
algorithm. The reduction of the threshold to a value
below the theoretical limit has little overhead in reduction
of the complexity of the surfaces that can be fused until it
is reduced close to the other end of the scale (a disparity
gradient of 0.0 corresponds to fronto-parallel surfaces). In
fact we find that a threshold disparity gradient of 0.5 is
very powerful constraint for which less than 7% of sur
faces (assuming uniform distribution over the Gaussian
sphere: following Arnold and Binford'') project with a
maximum disparity gradient greater than 0.5 when the
viewing distance is four times the interocular distance.
With greater viewing distances, the proportion is even
lower.

It has been shown6
,7 that enforcing a disparity gradient

ensures Lipschitz continuity on the disparity map. Such
continuity is more general than and subsumes the more
usual use of continuity assumptions in stereo.

The method used to calibrate the stereo cameras was
based on that described by Tsai8 (using a single plane
calibration target) which recovers the six extrinsic parame
ters (3 translation and 3 rotation) and the focal length of
each camera. This method has the advantage that all
except the latter are measured in a fashion that is indepen
dent of any radial lens distortion that may be present. The
image origin, and aspect ratios of each camera had been
recovered previously. The calibration target which was a
tile of accurately measured black squares on a white back
ground was positioned at a known location in the XY
plane of the robot work space. After both cameras have
been calibrated their relative geometry is calculated.

Whilst camera calibration provides the transformation
from the viewer/camera to the world/robot coordinate
spaces we have found it more accurate to recover the
position of the world coordinate frame directly. Stereo
matching of the calibration stimulus allows its position in
space to be determined. A geometrical description of the
position and orientation of the calibration target is
obtained by statistically combining the stereo geometry of
the edge descriptions and vertices",
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the right then a 2D description is obtained (and flagged as
such). By these methods we obtain more complete 2D
and 3D geometrical description of the scene from the left
eyes view than if we used only the stereo data. Figure 6
illustrates the GDB description.

Figure 6. Geometrical descriptions. In (a) both 2 and 3
dimensional descriptions, with respect to the left hand
image, are shown. Primitives of the GDB that are flagged
as 2D, as a result of the fact that no depth data has been
recovered for them by the stereo algorithm (perhaps as a
result occlusion), are displayed bold. It is important to
note that these exist only as descriptions in the image
plane and not as descriptions in the world. In (b) again
both 2 and 3 dimensional data are shown, but on this
occasion circular sections (in three dimensions and not
only in the image plane) of the GDB are the ones that
have been highlighted by displaying them bold. Before
segmentation each edge list is smoothed either by diffusion
or by the approximately equivalent Gaussian (0'=2.5) .

Evaluation of the geometrical accuracy of the descriptions
returned by the GDF has employed both natural and CAD
graphics generated images. The latter were subject to
quantisation error and noise due to the illumination model
but had near perfect camera geometry; they were thus
used to provide the control condition, enabling us to
decouple the errors due to the camera calibration stage of
the process. A full description of the experiments are to be
found inl 3

, suffice it to say that we find that typical errors
for the orientation of lines is less than a degree, and for
the normals of circular arcs subtending more than a
radian, the errors are less than 3 degrees in the CAD gen
erated images and only about twice that for images
acquired from natural scene. The positional accuracy of
features and curvature segmentation points has also been
evaluated, errors are typically of the order of a few mil
limetres which maybe argues well for the adequacy of
Tsai's camera calibration method more than anything else.

b

a

3. GDB: The recovery of the geometric descriptive
base.

In this section we briefly report the methods for segment
ing and describing the edge based depth map to recover
the 3D geometry of the scene in terms of straight lines
and circular arcs. A complete description of the process
can be found in Pridmore et allo and Porrill et all1

•

The core process is an algorithm (GDF) which recursively
attempts to describe, then smooth and segment, linked
edge segments recovered from the stereo depth map. GDF
is handed a list of edge elements by CONNECTI2

•

Orthogonal regression is used to classify the input string
as a straight line, plane or space curve. If the edge list is
not a statistically satisfactory straight line but does form
an acceptable plane curve, the algorithm attempts to fit a
circle. If this fails, the curve is smoothed and segmented
at the extrema of curvature and curvature difference. The
algorithm is then applied recursively to the segmented
parts of the curve.

Some subtlety is required when computing geometrical
descriptions of stereo acquired data. This arises in part
from the transformation between the geometry in disparity
coordinates and the camera/world coordinates. The former
is in a basis defined by the X coordinates in the left and
right images and the common vertical Y coordinate, the
latter, for practical considerations (eg there is no
corresponding average or cyclopean image), is with
respect to the left imaging device, the optical centre of the
camera being at (0,0,0) and the centre of the image is at
(O,O,t) where f is the focal length of the camera. While
the transformation between disparity space and the world
is projective, and hence preserves lines and planes, circles
in the world have a less simple description in disparity
space. The strategy employed to deal with circles is basi
cally as follows: given a string of edge segments in
disparity space, our program will only attempt to fit a cir
cle if it has already passed the test for planarity, and the
string is then replaced by its projection into this plane.
Three well chosen points are projected into the
world/camera coordinate frame and a circle hypothesised,
which then predicts an ellipse lying in the plane in dispar
ity space. The mean square errors of the points from this
ellipse combined with those from the plane provide a
measure of the goodness of fit. In practice, rather than
change coordinates to work in the plane of the ellipse, we
work entirely in the left eye's image, but change the
metric so that it measures distances as they would be in
the plane of the ellipse.

Typically, stereo depth data are not complete; some sec
tions of continuous edge segments in the left image may
not be matched in the right due to image noise or partial
occlusion. Furthermore disparity values tend to be errone
ous for extended horizontal or near horizontal segments of
curves. It is well known that the stereo data associated
with horizontal edge segments is very unreliable, though
of course the image plane information is no less usable
than for the other orientations. Our solution to these prob
lems is to use 3D descriptions to predict 2D data. Residual
components derived from reliable 3D data and the image
projection of unreliable or unmatched (2D) edges are then
statistically combined and tested for acceptance. Where an
edge segment from the left image is entirely unmatched in
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4. SMM: The Scene and Model Matcher.

The matching algorithm 14, which can be used for scene to
scene and model to scene matching, exploits ideas from
several sources: the use of a pairwise geometrical relation
ships table as the object model from Grimson and
Lozano-Perez 15-17, the least squares computation of
transformations by exploiting the quatemion representation
for rotations from Faugeraus et aI18

•19, and the use of
focus features from Bolles et a121• We like to think that
the whole is greater than the sum of its parts!

Figure 7. Matching scene descriptions: (a) shows a stereo
view of the object/scene (obtained from the IBM WINSOM
CSG body modeler); (b) and (c) GDB data extracted for
two views of this object. Each description consists of
approximately 50 above-threshold GDB line primitives.
The 10 focus features chosen in view (b) obtained a total
of 98 potential matches in view (c). Setting S to 7 and C
to 4 only 78 independent implicit transformations result.
After extension the best consistent transformation included
9 matched. The least square transformation (rotation fol
lowed by translation) that takes view (b) to view (c) is

I 18 •computed by the method discussed by Faugeras et a In

which rotations are represented as quaternions. In figure
(d) view (b) is transformed into view (c) (the error in the
computed rotation is 0.7 degrees) and matching lines are
shown bold, the vast majority of the unmatched lines are
not visible in both views (often as a result of noise).

5. TIED: the integration of edge descriptions.

The geometrical information recovered from the stereo
system described above is uncertain and error prone, how
ever the errors are highly anisotropic, being much greater
in depth than in the image plane . This anisotropy can be
exploited if information from different but approximately
known positions is available, as the statistical combination
of the data from the two viewpoints provides improved
location in depth. From a single stereo view the uncertain
ity can only be improved by exploiting geometrical con
straints. A method for the optimal combination of
geometry from multiple sensors based on the work of Fau
geras et aPl and Durrant-WhyteP has been developedf',

The matching strategy proceeds as follows:

1) a focus feature is chosen from the model;

2) the S closest salient features are identified (currently
salient means lines with length greater than L);

3) potential matches for the focus feature are selected;

4) consistent matches, in tenus of a number of pairwise
geometrical relationships, for each of the neighbour
ing features are located;

5) the set of matches (including the set of focus
features) is searched for maximally consistent
cliques of cardinality at least C, each of these can
be thought of as an implicit transformation .

6) synonymous cliques (that represent the same impli
cit transformation) are merged and then each clique
is extended by adding new matches for all other
lines in the scene if they are consistent with each of
the matches in the clique. Rare inconsistency
amongst an extended clique is dealt with by a final
economical tree search.

1) extended cliques are ranked on the basis of the
number and length of their members.

8) the transformation implicitly defined by the clique is
recovered using the method described by Faugeras
et ailS.

The use of the parameters S (the neighbours of the focus
feature) , and C (the minimum subset of S ) are powerful
search pruning heuristics that are obviously model depen
dent Work is currently in hand to extend the matcher
with a richer semantics of features and their pairwise
geometrical relationships, and also to exploit negative or
incompatible information in order to reduce the likelihood
of false positive matches.

The pairwise geometrical relationships made explicit in
the matching algorithm can be used to provide a useful
indexing scheme. Each primitive has associated with it a 1
dimensional hash table quantised by 9 (their angular
difference), each element of which includes a list, sorted
by their absolute minimum separation, of pointers to look
up table entries that lie within the associated 9, bucket
(this can be searched rapidly using a binary search). This
scheme allows relationships found in one scene descrip
tion to be compared rapidly with relationships present in
the other.

An example of the performance of the matching algorithm
is given in Figure 7.

a
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problem to be linearised SMM is used to give a first esti
mate of the transformation that takes one scene description
into another. This suboptimal transformation is applied to
each description in the first view to bring them into near
correspondence with those in the second. Subsequently
the constraints that lines from one view match with lines
in the other are imposed in tum and the [statistical] esti
mate of their positions updated. Each merge results in
minor modifications to the current estimate of the transfor
mation. with the final result being optimal (due to the fact
that the anistropies of the stereo process have been taken
into account). This process can be repeated to incorporate
subsequent views resulting in ever improved statistical
estimates of the structure of the object.

and extended to deal both with the specific geometrical
primitives recovered by the GDF and the enforcing of
constraints between them.

a
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Figure 9. The integration of linear edge geometry from
multiple views: (a) 3D data extracted from eight views of
the object to be modelled (produced by the IBM WINSOM
CSG body modeler); (b) the final visual model.

Figure 9 shows the automatic generation of a visual model
through the integration of linear edge geometry from mul
tiple views. To ensure a description of the model suitable
for visual recognition and to allow greater generality we
combine geometrical data from the multiple views of the
object to produce a primitive visual model of it. Their
combination is achieved by incrementally matching each
view to the next. Between each view the model is
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Figure 8. Geomstat: statistical combination: (a), (b) and
(c) show details from real stereo views of our test object.
These are matched by SMM, optimally combined, and
have obvious geometrical constraints imposed (eg perpen
dicularity, intersection, parallelity etc) with the result
given in (d).

One application of GEOMSTAT (Figure 8) is the acquisi
tion of accurate and complete wirefrarne models of objects
or environments from multiple stereo views. To allow the
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updated, novel features added and statistical estimation
theory used to enforce consistency amongst them (here
only through the enforcement of parallelism and perpendi
cularity). Finally only line features that have been
identified in a more than a single view appear in the final
visual model. The positions of extremal boundaries are
viewpoint dependent and their treatment requires a degree
of subtlety not yet present in our vision system, firstly to
identify them, and secondly to treat them appropriately in
the matching and geometrical integration processes.
Clearly, though not position invariant, in the case of
cylinders at least the relative orientation is stable over
view and this information could be exploited. In figure
9, both the circular arcs and the extremal boundaries are
displayed for largely cosmetic purposes.

b
Figure 11. Closing the loop: (a) and (b) show the ann
grasping the object and the scene with the object removed.
Model matching for this scene (from which the grasp posi
tion is calculated) is illustrated in figure 10(c).

a

GEOMSTAT is also used to obtain the statistically
optimum estimate of the position and direction cosines of
the target object coordinate frame after the SMM match
ing stage has been completed. This is done by enforcing
the constraints that the axes of Ute coordinate frame are
parallel to all the lines they should be, that they are mutu
ally perpendicular, and intersect at a single point The
result of the application of this stage of Ute process is Ute
position and attitude of the object in the world coordi
nates.

a

b

c

Figure 10. Object location.

Figure 10 illustrates the SMM matching the compiled
visual model in a number of scenes. Given the simple
visual model that has been constructed in Ute previous sec
tions it is possible to match it, using SMM, to an instance
of the object in a cluttered scene. Three examples are
illustrated here. In each example Ute dark lines depict Ute
projection of the object model into the scene geometry
after being transformed by Ute rotation and translation pro
duced by the matching process (SMM) and the geometry
integration process (TIED). To give some idea of the scale
of Ute matching search problem, the object model contains
41 features and the scene in Figure 10 (a) contains 117.
Some 10 model focus features, chosen on the basis of
length, resulted in the expansion of only 292 local cliques.
The latter were required to be of magnitude at least C=4
from S=7 neighbouring features. The largest extended



clique found by the matcher contained 13 matched lines.
Figure 10 (c) depicts the scene viewed by the camera rig
in figure 1.

The information provided by matching gives the RHS of
the inverse kinematics equation which must be solved if
our manipulator is to grasp the object (Figure 11).

Figure 12. Wireframe completion.
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Figure 13. Pairwise relations: (a) all the lines perpendicu 
lar to the arrowed line have been generated; (b) all the
lines parallel to the arrowed line have been generated.

6. REV: The regions, edges, vertices graph.

The system may be regarded as generating a sequence of
representations each spatially registered with respect to a
coordinate system based on the left eye: image, edge map,
depth map and geometrical description. In the initial
stages of processing a pass oriented approach may be
appropriate but we consider that it is desirable to provide
easy and convenient access between the representations at
a higher level of processing. The REVgraph is an environ
ment, built in Franz Lisp, in which the lower level
representations are all indexed in the same co-ordinate
system. On top of this a number of tools have been and
are being written for use in the development of higher
level processes which we envisage overlaying the
geometrical frame with surface and topological informa
tion. Such processes will employ both qualitative and
quantitative geometrical reasoning heuristics. In order to
aid debugging by keeping a history of reasoning, and
increase search efficiency by avoiding backtracking, the
REVgraph contains a consistency maintenance system
(CMS), to which any processes may be easily interfaced.
The CMS is our implementation of most of the good ideas
in Doyle/" and DeKlee?5 augmented with some our own.
The importance of truth maintenance in building geometri
cal models of objects was originally highlighted by Her-
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mann26• Details of the REVgraph and CMS implementa
tion may be found in Bowen27•

Figure 12 illustrates a prototype wireframe completion
algorithm. It links straight edges together to form T
junctions or vertices as appropriate. Inconsistencies
between such labelings are identified and handled by the
CMS. In this case the ambiguity is slight only 6 possible
solutions (contexts) result, two of which are shown above
(with vertices labeled V and T-junctions labeled T). The
context on the right was adjudged by the program to be
the most complete, while the one on the left contains a
rather dubious T-junction where there should be a vertex
(marked on the far left of the modeled object). The
search space was bounded by some simple heuristics,
using evaluations over the various CMS contexts, which is
why a few lines are left incomplete where insufficient
depth information is available. Note that incorrect deci
sions are possible (eg. the edge along the right hand side
of the base of the cylinder which forms a vertex with the
block on its right).

Figure 13 showe some useful pairwise relationships that
are made explicit within the REVgraph environment. The
formation of a pairwise relations table is a utility in the
REVgraph. It generates pairs of lines and the geometric
relations between them according to certain user requests.

7. Conclusions

We demonstrate the ability of our system to support
visual guided pick and place in a visually cluttered but, in
terms of trajectory planning, benign manipulator
workspace. It is not appropriate at this time to ask how
long the visual processing stages of the demonstration
take, suffice it to say that they deliver geometrical infor
mation of sufficient quality, not only for the task in hand
but to serve as a starting point for the development of
other visual and geometrical reasoning competences.

Acknowledgements

We gratefully acknowledge Dr Chris Brown for his valu
able technical assistance. This research was supported by
SERC project grant no. GR/D/1679.6-IKBSI025 awarded
under the Alvey programme.

References

1 Canny J.P. (1983), Finding edges and lines in images,
MIT AI memo, 720, 1983.

2 Pollard S.B., J.E.W. Mayhew and J.P. Frisby (1985),
PMF: a stereo correspondence algorithm using a
disparity gradient limit, Perception. 14, 449-470.

3 Pollard S.B., J. Porrill, J.EW. Mayhew and J.P. Frisby
(1985), Disparity gradient, Lipschitz continuity and
computing binocular correspondences, Proc. Third
Int . Symp. on Robotics Res. 19-26.

4 Burt P. and B. Julesz (1980), Modifications of the classi
cal notion of panum's fusional area, Perception 9,
671-682.

5 Arnold R. D. and T. O. Binford (1980) Geometric con
straints in stereo vision, Soc. Photo-Optical Instr.
Engineers. 238, 281-292.

J



6 Trivedi H.P. and SA Lloyd (1985), The role of dispar
ity gradient in stereo vision, Compo Sys. Memo 165,
GEC Hirst Research Centre, Wembley, England.

7 Porrill J. (1985) Notes on: the role of the disparity gra
dient in stereo vision, AIVRU Lab Memo 009,
University of Sheffield.

8 Tsai R.Y. (1986), An efficient and accurate camera cali
bration technique for 3D machine vision, Proc IEEE
CVPR 86, 364-374.

9 Pollard S.B. and 1. Porill (1986), Using camera calibra
tion techniques to obtain a viewer centred coordi
nate frame, AIVRU Lab Memo 026, University of
Sheffield.

10 Pridmore T.P., J. Porrill and J.E.W. Mayhew (1986),
Segmentation and description of binocularly viewed
contours, Alvey Computer Vision and Image
Interpretation Meeting, University of Bristol, and
Image and Vision Computing 5 No 2 132-138.

11 Porrill J., T. P. Pridmore, J. E. W. Mayhew and Frisby,
1. P. (1986a) Fitting planes, lines and circles to
stereo disparity data, AIVRU memo 017

12 Pridmore T.P., J.E.W. Mayhew and J.P. Frisby (1985),
Production rules for grouping edge-based disparity
Data, Alvey Vision Conference. University of
Sussex, and AIVRU memo 015, University of
Sheffield.

13 Pridmore T.P. (1987), The Interpretation of edge based
binocular disparity information, Phd Thesis, Univer
sity of Sheffield.

14 Pollard S.B., J.Porrill, J.E.W. Mayhew and J.P. Frisby
(1986), matching geometrical descriptions in 3
space, Alvey Computer Vision and Image Interpreta
tion Meeting , Bristol, AIVRU Memo 022 and Image
and Vision Computing 5 No 2 73-78.

15 Grimson W.E.L. and T. Lozano-Perez (1984), Model
based recognition from sparse range or tactile data,
Int. J. Robotics Res. 3(3): 3-35.

16 Grimson W.EL. and T. Lozano-Perez (1985), Recogni
tion and localisation of overlapping parts from
sparse data in two and three dimensions , Proc IEEE
Int. Conj. on Robotics and Automation, Silver
Spring: IEEE Computer Society Press, 61-66.

17 Grimson W.E.L. and T. Lozano-Perez (1985), Search
and sensing strategies for recognition and localiza
tion of two and three dimensional objects, Proc.
Third Int. Symp. on Robotics Res.

18 Faugeras O.D., M. Hebert, J. Ponce and E. Pauchon
(1984), Object representation, identification, and
positioning from range data, Proc. 1st Int . Symp. on
Robotics Res, J.M. Brady and R. Paul (eds), MIT
Press, 425-446.

19 Faugeras O.D. and M. Hebert (1985), The representa
tion, recognition and positioning of 3D shapes from
range data, Int. J. Robotics Res

20 Bolles R.C., P. Horaud and M.J. Hannah (1983),
3DPO: A three dimensional part orientation system,
Proc. IlCAl 8, Karlshrue, West Germany, 116-120.

263

21 Faugeras O.D., N. Ayache and B. Faverjon (1986),
Building visual maps by combining noisy stereo
measurements, IEEE Robotics conference.
San Francisco.

22 Durrant-Whyte H.F. (1985), Consistent integration and
propagation of disparate sensor observations, Thesis,
University of Pennsylvania.

23 Porrill J., S.B. Pollard and J.E'w Mayhew (1986b),
The optimal combination of multiple sensors includ
ing stereo vision, Alvey Computer Vision and Image
Interpretation Meeting, Bristol, AlVRU Memo 25
and Image and Vision Computing 5 No 2 174-180.

24 Doyle J. (1979), A truth maintenance system, Artificial
Intelligence 12,231-272.

25 DeKleer J. (1984), Choices without backtracking, Proc,
National Conference on Artificial Intelligence.

26 Herman M. (1985), Representation and incremental
construction of a three-dimensional scene model,
CMU-CS-85-103, Dept. of Computer Science,
Carnegie-Mellon University.

27 Bowen J.B. and J.E.W. Mayhew (1986), Consistency
maintenance in the REV graph environment, Alvey
Computer Vision and Image Interpretation Meeting,
University of Bristol, AIVRU Memo 20, and Image
and Vision Computing (in press).


