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It is known (Longuet-Higgins 1984a and 1984b) that if two
spherical images of a visually textured surface.from finiteiy
separated viewpoints, allow more than one 3D interpretation ,
then the surface must be part ofa quadric passing through the
two viewpoints. It is here shown that this quadric is either a
plane or a ruled surface ofa type first considered by Maybank
(1985) in a study of ambiguous optic flow fields ; and that
three is the maximum number of interpretations that the two
images can sustain. An explanation is offered for the fact
that two images of just 5 points generally permit two
distinct 3D interpretations.

1 INTRODUCTION

A much discussed problem in computer vision (Hay 1966;
Ullman 1979; Tsai and Huang 1981a, 1981b; Longuet
Higgins 1984a, 1984b; Maybank 1985; Subbarao 1986) is
the degree of ambiguity of a pair of 2D projections of a
scene; under what circumstances are they susceptible of more
than one interpretation, and what is the maximum number of
interpretations that can be entertained in exceptional
circumstances? The problem arises when a camera is in
motion through a rigid scene (Lee 1974; Nakayama and
Loomis 1974; Koenderink and van Doorn 1976) and it is
required to determine the notion of the camera, and the
structure of the scene, from a pair of photographs taken one
after the other (Longuet-Higgins 1981). If the time interval
between them is very short, the problem reduces to that of
determining the linear and angular velocity of the camera
from an "optic flow field" (Longuet-Higgins and Prazdny
1980); a recent paper by Maybank (Maybank 1985) gives a
definitive account of the ambiguities that can arise in that
case . The present paper extends Maybank's results to the
case in which the two camera positions are finitely separated.

The main existing results on the ambiguity of pairs of
photographs taken from discretely separated viewpoints are as
follows :

(a) If 8 or more points in the scene appear in both
photographs then in general their 3D locations are
unambiguously determined (Longuet-Higgins 1981).

(b) If all the points that appear in both photographs happen
to lie in a plane, there will be two distinct
interpretations (Hay 1966), or just one if the line
joining the viewpoints is perpendicular to the plane.

1A later and more definitive version of this paper has appeared in
Proc. Roy. Soc . A 418, 1-15 (1988), under the title "Multiple
interpretations of a pair of images of a surface", but the main
conclusions stand .

(c) An algorithm that yields the unique interpretation of
two views of 8 points in general position fails if and
only if all the visible points of the scene lie on a
quadric surface that passes through the two viewpoints
(Longuet-Higgins 1984).

In this paper it will be shown that

(d) even when the scene is a visually textured quadric
surface passing through the two viewpoints, the two
images will generally possess a unique interpretation,
but

(e) if this quadric is of a special type, first considered by
Maybank(1985), then there may be two or even three
distinct interpretations, but there cannot be more than
three.

2 FORMULATION OF THE PROBLEM

The scene is supposed to consist of a set of visual texture
elements disposed on a rigid surface. The two camera
positions are denoted by 0 and 0'. A typical element P is
situated at vector position pQ relative to 0, p being the
distance OP and Q being a unit vector, which may be
thought of as a point on the unit sphere centred at°(Hadani,
Ishai and Gur 1980; Yen and Huang 1983). Relative to the
second camera position the vector position of P is p'Q',
where Q' is a point on the unit sphere round 0' and p' is the
distance O'P. So if T and U-1 are the translation and rotation
that carry the camera from 0 to 0', then

(1) p'Q' = U(pQ-1).

Equation (1) is to be regarded as a mapping between the space
of the vectors Q, associated with the position 0, and the
space of the Q', associated with 0'. In actual computations
these vectors are represented by cartesian coordinates (x,y,z)
or (x',y',z'), with squares adding up to 1. The translation T is
taken to be a unit vector - a convention that fixes the
otherwise indeterminate scale of distance - and the rotation U
is represented as a proper orthogonal3x3 matrix (one whose
reciprocal U-lequals its transpose U-, and whose determinant
equals unity).

In the coordinate system of the second viewpoint, p'Q', pUQ
and UT are vectors describing the three sides of the triangle
O'PO. It follows at once that their triple product vanishes,
and that

(2) [Q', UQ, UT] =0

- a relation known as "the epipolar constraint". It is the
validity of (2) for all pairs of image points (Q,Q'), that



makes it possible, under favourable circumstances, to
compute T and U and the structure of the scene from the two
images alone .

There are, however, certain pairs of images that admit of two
or more interpretations, in 'the sense that all the pairs (Q,Q')
satisfy two distinct equations of type (I), namely

(3) PI'Q' = U1(PIQ-T1) and

(4) P2'Q'=U2(P2Q-T2)·

"In (3) and (4) the subscripts 1 and 2 refer, of course, to the
two interpretations; in each interpretation p is a function of
Q and p' is a function of Q':

(5) PI =PI(Q), PI' =PI'(Q'),
P2=P2(Q), P2'=P2'(Q')·

An ambiguous pair of images therefore satisfies the identity

The second equality in (6) implies that, for every image point
Q, UI(PIQ-TI) is a linear combination ofU2Q and U2T2; and
it entitles us to infer that

Multiply the second term in (7) by PI' and abbreviating the
vector PIQ as R, we arrive at the equation

The triple product on the left hand side is clearly a second
order polynomial in (X, Y, Z), the components of R, and so
(8) is the equation of a quadric passing through the points 0
and 0', where R =0 and R = T1 respectively. But not every
quadric passing through 0 and 0' can be represented in the
form (8), since for given TI and UI this form has only 5
degrees of freedom (2 for the unit vector T2 and 3 for the
rotation matrix U2). We deduce that although twofold
ambiguity is quite likely to arise (and usually does - T S
Huang, personal communication) if not more than 5 texture
elements can be identified in both photographs, with 6 or
more elements the two images will generally permit only
one interpretation even when all the elements lie on a quadric
passing through both 0 and 0' .

Equation (7) may be written as an explicit equation for PI(Q):

Interchanging the subscripts 1 and 2 we deduce that on the
other interpretation the equation for p(Q) is
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3 MULTIPLE AMBIGUITY

In his discussion of optic flow fields Maybank established
(Maybank 1985) that 3 is the maximum number of distinct
alternative interpretations of such a field, each being
associated with distinct values of the camera's angular
velocity and direction of motion . We shall show that the
same is true of a pair of finitely separated projections.

If there are two interpretations of a pair of images, PI(Q)
must satisfy (9); if there are 3, it must also satisfy

It is the necessary equivalence of (9) and (11) that forms the
basis of the following discussion.

The numerators of (9) and (11) are first order polynomials in
the components of Q, and the denominators are polynomials
of the second order. The most straightforward case is that in
which each numerator divides its denominator algebraically,
so that both (9) and (11) reduce to

(12) PI(Q) = 1/(N.Q).

This is the equation of a plane, the vector N being the
inverse normal to the plane. The potential ambiguity of a
pair of views of a plane has been fully discussed elsewhere
(Longuet-Higgins 1984b), so we shall confine ourselves
from now on to the case in which PI (Q) is not a plane, and
the numerators in (9) and (11) do not divide their
denominators. It follows at once that the numerators and the
denominators in (9) and (11) are directly proportional - that
there exists a constant c such that

(13) [VIQ, U2Q,U2T2) = C[UIQ, U3Q, U3T3] and

(14) [VITI' U2Q,U2T2] = c[UITl' U3Q, U3TJ.

Though it is by no means obvious, the insertion of arbitrary
values of UI' U2 and U3 into (13), and subsequent
comparison of the polynomial coefficients, determines the
magnitude of c and the directions of T2and T3' (The signs of
the translation vectors cannot be determined until later, when
the values of the distances p(Q) and p'(Q') are being
computed; for each of the three interpretations of the sign of
T must be such as to make all these distances positive, and if
this is not possible the interpretation fails.) TI is then
determined (again with unknown sign) by inserting the
values of the other parameters into (14).

The detailed justification of these assertions will be given
elsewhere; here we give the results of just one such
computation, illustrating the fact that the three
interpretations of a triply ambiguous pair of images may be
uncomfortably close together .

First, the Q vectors of 5 points in the first image:

0.396
0.180
0.171

-0.118
-0.272

-0.172
0.438
0.371
0.061
0.164

0.902
0.881
0.913
0.991
0.948



Next. the Q' vectors of the corresponding points in the other
image:

0.322
0.172
0.162

-0.062
-0.204

-0.200
0.411
0.342

-0.011
0.100

0.925
0.895
0.926
0.998
0.974
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viewpoint is the common plane of v and v' (since when R is
small the triple product [vt, v, R] is very small); (c) it
contains the line R = AV' (such a value of R causing both
sides of (15) to vanish); and (d) its quadratic part has a
specially simple diagonal form. If the X and Z axes are taken
as the internal and external bisectors of the angle 20 between
W' and v', the right hand side of (15) becomes

(18) k[s2}{2+ (s2-c~y2 - c2z2]
Finally. the vector T, the matrix Uand the p values of the 5
points, in the 3 distinct interpretations:

Interpretation 1

-0.239 0.541 -0.807

0.999 0.019 -0.035
-0.015 0.996 0.092
0.036 -0.091 0.995

2.637 6.782 6.227 2.779 3.477

Interpretation 2

-0.846 0.435 0.310

0.995 0.056 -0.083
-0.056 0.998 0.001
0.082 0.004 0.997

62.751 21.478 19.194 6.095 5.405

Interpretation 3

-0.830 0.401 0.387

0.995 0.048 -0.088
-0.048 0.999 -0.002
0.087 0.006 0.996

52.076 18.157 16.592 5.813 5.066

4 GEOMETRICAL CONSIDERATIONS

In this section we briefly review what is knownabout triply
ambiguous flow fields. and show that the surfaces from
which they arise are of the same type as those that give rise
to triply ambiguous image pairs. We conclude' that the
number'of distinct interpretations of two views of a textured
surface cannot exceed 3.

In his 1985 paper Maybank showed that ambiguous flow
fields can only arise from planes or quadric surfaces of a
special form. namely

(15) M: [v', v, R] =(W'.R)(v'.R) - (W'.v')R2,

where (v, 0) and (v', a') are alternative values of the
camera's linear and angular velocity,

(16) W' =0' - Q and

(17) R = pQ = (X, Y, Z).

The quadric M has several interesting properties: (a) it
passes through the viewpoint R =0; (b) its tangent at the

where k is the product of the lengths of W' and v', c =COS0

and s =sine, Since the line R = Av' lies entirely in M, M
must be a ruled quadric, the mostgeneral such surface being a
hyperboloid of one sheet. A hyperbolic paraboloid is also a
possibility (if c2::s2) , but in either case the middle coefficient
in (18) is the sum of the other two.

We shall refer to the directions of W and v' as the principal
directions of the quadric M. A triply ambiguous flow field
arises if in addition to (v, n) and (VitO') there exists a third
pair of velocities (v", a") such that W" (= Ott-C) is parallel
to v' and Wit is parallel to v", Then the principal directions
of M can, as it were, exchange roles, the one that was
parallel to W' now being regarded as parallel to v", and the
one that was parallel to v' being seen as parallel to W". It is,
essentially, this duality that limits the number of
interpretations; given the "correct" interpretation (v,O) of
two views of M, the two other interpretations, (v', 0') and
(v", Ott), exhaust the possible ways of associating a linear
velocity and an angular velocity difference with the principal
directions of M.

At first sight equation (8), describing the type of surface that
gives rise to ambiguous pairs of views. looks rather different
from equation (18), for the optic flow case. But as we shall
see in a moment, there is a close relation between the
swfaces they represent

We begin by writing (8) in the form

(19) L: [U(R-Tl)~,T] =0,

whereU =(U~-lUl and T= T2•

Like Maybank's quadric M, the surface L is a ruled quadric
containing the viewpoints R =0 and R =T1 and the straight
line R =IT. We now show that the second-order termsof L
are identical in form with those of M.

Writing R =(X, Y, Z), and using lower-caseletters to denote
the 3 components ofT and the 9 components of U, we begin
by expanding the second-order part of (19) in the form

(20) [UR. R, 11 = X2(u311:z -U211::3)
+ y2(....) + Z2( .... )
+ YZ(~2tl-u12~+U13~-~3t1)

+ ZX(....) + Xy(....)

where the dots indicate that the subscripts 1, 2 and 3 have
been cyclically permuted. In order to proceed we need a
parametricrepresentationof the elementsof U. A convenient
one for the present purpose is in terms of 3+1 real numbers
p, q, rand s whose squares add up to 1:



(21) ull=p2_q2_N S2. u12=2(pq - rs), u I3=2(rp + qs),

U21=2(pq + rs), U:z2=-p~2-r~s2, ~=2(qr-ps),

U31=2(rp -qs), ~z=2(qr+ps),

~3=-p2-q2+r2+s2.

(In point of fact s =cos('ljf12), where 'Ijf is the rotation angle
of U and (P, q, r) are the direction cosines of the rotation
axis, multiplied by sin('Ijf/2).) Substituting from (21) we
obtain the coefficient of X2 in (17) as

(22) 2(pr - qs)~ - 2(pq + rs)~

and that of YZ as

(23) 2(q2_r2)tl - 2(pq - rs)tz+ 2(pr - qs)~,

with analogous expressions for the other coefficients.

Defining threenew vectors

(24) u = (P, q, r), v = u x T, w = sT - v,

we obtain, after some algebra,

(25) [DR, R, 11 = 2[(u.R)(w.R) - (U.w)R2].

The right hand side of (25) is identical in form with that of
(15), showing that L as defined by (19) is indeed a Maybank
quadric.

To recapitulate: we showed in section 2 that in order to
present an ambiguous pair of views from camera positions
related by the relative orientation (TI'UI), a surface must be
of the form (8) or equivalently (19). The second-order terms
in its equation are of the same form as those of the Maybank
quadric (15); the principal directions - those of u and w - are
functions of U, and of the translation T2 and the rotation Uz
associated with the alternative interpretation.

In the triply ambiguous case the same functions of U I , T3
and U3 must also yield the principal directions of the same
quadric; this is only possible if u' is parallel to w and w' is
parallel to u, and leaves no room for any further distinct
interpretation. Three is therefore the maximum number of
distinct interpretations of two views of a visually textured
surface.

5 DISCUSSION

What we have shown is that the existence of two alternative
interpretations of a pair of views of a visually textured
surface implies that the surface is either a plane or a quadric
of the form (8). Given any "true" relative orientation (TI'
U I ) and any "spurious" one (Tz' Uz), one can construct a
quadric of type (8) such that its two images will sustain
either of the associated interpretations. This quadric passes
through both viewpoints and contains the line R =AT2; it is,
in fact, a surface of the type first considered by Maybank in
connection with the interpretation of optic flow fields. The
spurious interpretation will not necessarily satisfy the
visibility conditions - that p(Q) and p'(Q') are both positive
for all the image points. But the more nearly equalare the
two relative orientations, the greater the likelihood that the
alternative interpretation will survive the visibility test.
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Three is the maximum number of distinct interpretations of a
pair of views of a surface patch. Triply ambiguous view
pairs may be constructed by assigning arbitrary values to the
three associated rotation matrices; the corresponding
translation vectors are then uniquely determined, as well as
the three alternative surfaces on which the visible points may
bedeemed to lie.

Apart from their purely mathematical interest, these results
have both a reassuring and a disturbing aspect for the
designers of computer vision systems. Reassuring, in that
they demonstrate the existence of an upper limit to the
number of interpretations that two images will sustain if a
sufficient number of visible texture elements (5 or more, in
general) appears in both images; disturbing, in that they
remind us of the untrustworthiness of vision algorithms
based on the implicit assumption that there must be a single
"best" interpretation of any given set of visual data.

Perhaps the most useful fact to emerge from the present
analysis is that the most hazardous scenes for computational
analysis are those in which all the visible texture elements
lie in one smooth surface. The simplest scenes are often the
most perceptually confusing!
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