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INTRODUCTION

This paper describes the current version of the P1v1F stereo
algorithm. The two preceding papers (Pollard, Mayhew and
Frisby, 1985 [1]; Pollard, Porrill, Mayhew and Frisby, 1985
[2])were largelyconcerned with the theoreticalconsiderations
that have underpinned the general design philosophy of P:MF.
Withinthat general framework a great deal of scope exists for
particular implementation details. The ones described here
attend to the twin requirements of robustness and efficiency
on state of the art computer machinery. Also, this
implementation incorporates some features from other stereo
algorithms aimed at exploiting more global constraints than
thoseembeddedin the originalP?v1F.

CONTROL STRUCTURE

Figure 1 provides an overview of the control structure.
Processing stages are represented as rectangular boxes, and
decisions as diamonds. The algorithm makes three iterations
througha fixed sequence of processing stages. Once selected,
matches remain fixed for any remaining iterations. For
selection,matches must satisfy a number of matching criteria
based upon gradient support, figural continuity, and the
satisfaction of the ordering constraint.

POTENTIAL MATCH SELECTION

The physical locations of potential matches satisfy the
epipolar constraint. In particular, it is assumed that the edges
to be matched have arisen from a simplified parallel camera
geometry in which the imaging planes of each camera are
coplanar, the inter-ocular axis parallel to it, and the images
arrays similarly oriented. Under such conditions the epipolar
constraint becomes a same-raster constraint, thereby
simplifying the process of match selection. Whilst this
restriction may seem severe, it is in practice straightforward
to rectify edge locations to give the appearance that they
arose from a parallel camera geometry provided that the true
camera geometry is known to reasonable accuracy. Thus
rectificationassumes either a priori knowledge or some form
of calibration process to determine the physical camera
geometry. In the examples of the performance of PMF
shown below we have used the method of calibration from
Tsai (1986) to recover a suitable approximation to the
physicalcamerageometry.

Initial ranges of allowable image disparity can be either (1)
preset arbitrarily: for later performance examples they were
fixed to +/- half the size of the images; or (2) selected using
disparity histogramming (based upon Shirai and Nishimoto,
1986) to set initial disparity ranges for each region of the
image (16 by 16).

Matches between edges are restricted to have differences in
left and right image orientations that could have arisen from a
disparity gradient (DG) of 1.0. Hence edges that have

orientations close to vertical are allowed to reorient to a
greater extent than those close to horizontal. The sign and
physical contrast of a pair of edges can also be used to
determine both their matchability and matching strength. In
the initial stages of the algorithm the contrast of a pair of
matching edges must agree to a factor of 3. The strength of a
match is the product of the individual contrast values, thus
giving greater weight to matches between more robust edges.

SELECT SEED POINTS

A strategy aimed at fast yet reliable matching is to begin by
seeking a set of strong seed point matches which can be used
to guide selection of subsequent matches. This is done by
trying to match at first only a subset of all the edge points
available. So, only every nth point on an edge string is
considered (currently n=4) as a seed point, and only every mth
point along a string can give support (currently m=2).
Figure 2 illustrates these concepts.

COMPUTE WITHIN-DG-LIMIT SUPPORT

In figure 3 the small circles p, p', p", t. and j' represent edge
point primitives (the edge strings of which they form a part
are not shown). Matching is initiated from left image
primitives and two potential matches for p are illustrated
with the lines labelled pp' and pp". Support for each of
these matches is sought from the potential matches of other
left image primitives lying within the neighbourhood
support circle (of radius r not drawn to scale) shown around
p. Just one supporting match ij' is illustrated for the match
pp': note that ij' lies within the disparity gradient limit with
respect to pp'.

The local neighbourhood support scheme is run with the DG
limit set to 0.5, a value which provides better
disambiguating power than 1.0 (pollard, 1985). The size of
the support neighbourhood is set to be a function of the
image size (currently a default radius of 20 pixels for
256x256 images, a radius of 40 pixels for 512x512 images).
The underlying concern here is to ensure that the support
neighbourhood is large enough to provide good
disambiguation while not being so large that processing time
is spent needlessly.

ENFORCE WITHIN·DG-LIMIT SELECTION

From the list of potential matches for a given left image seed
point candidate, choose the strongest match unless there
exists in the neighbourhood a point with a stronger match
that exceeds DG=1.5 with respect to the match under
consideration. If a selection is made, eliminate from further
consideration at this stage (they may get reconsidered later):
(i) all other matches for the given left image edge primitive,
and (ii) those that violate the gradient limit with respect to
the selected match.
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Figure 2 Selection ofSeed Point Matches. The small circles represent edge point primitives comprising edge strings.
Matching is initiated from left image strings and at first only every nth point comprising a left hand string is
considered for matching. Such points are termed 'seed points'. Two potential matches for the seed point primitive p
are shown, pp' and pp". Support for each of these matches is sought within the neighbourhood support circle
shown around p (radius not drawn to scale), with every mth primitive along the string evaluated for the support it
offers (the dotted circles illustrate m=2).
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Figure 4 Exploiting the Figural Continuity Constraint by
Matching Strings of Edge Points as a Whole. Lines
connecting left and right image strings depict matches
between initial seed points . The second line from the top
shows a match whose right image primitive lies within a
different edge string from those of all other matches. This
f act is discovered and the discrepantmatch killed off.

Figure 5 Imposing the Ordering Constraint Explicitly.
Suppose strings of points existed in the two images as
shown , each with associated strengths a, b , c', d'.
Suppose also that the correct matches were M', BB', CC'
and DD'. If matches M', BD', CC' and DB' were initially
chosen then the violation of the ordering constraint by
matches BD' and DB' would be noted. The weakest strings
whose elimination from matching would remove the
violation are then discovered, and their primitives freed for
reconsideration by later stages ofmatching.

The rationale for the unless proviso is that if there exists a
stronger match in the neighbourhood that offends a quite
steep disparity gradient limit then this is evidence that the
match under consideration might well be false. It should not
therefore be selected as a seed point on which to base other
selections.

The selection rule is applied iteratively. If a stronger match
exists then no selection is made on that iteration . If the
stronger match gets killed off (by not getting selected as a
seed point itself) then any selection held over may be allowed
to proceed on the next iteration.

The above selection procedure implements the uniqueness
constraint by allowing only one match per primitive but it
does so only with respect to the left image points.
Uniqueness is not imposed with respect to right image points
as well (as happened in early versions of PMF) except latei:
on via a greater use of the ordering constraint

FIGURAL CONTINUITY

The figural continuity constraint is exploited by counting the
seed points along each string of edge points , and selecting
that string which contains the majority of seed point
matches. This operation marks a shift from the fairly local
operations embedded in the neighbourhood support stage to
much more global operations that can in principle span quite
large regions of the image (in fact the whole image if an edge
happens to traverse right across it). Seed point matches to the
'wrong' edge string get killed off at this stage (figure 4).

Thi s stage copes with mild 'wallpaper illusion' problems
caused by similar but not identical edge strings. Of course,
there is no way to solve the ambiguity problem posed by

repeating identical surfacetexture elements (the real wallpaper
illusion problem) unless some disambiguating information
can be propagated from the 'edges of the wallpaper'.

Finding matches between seed points is also done by a
species of figural grouping. The procedure employed simply
extrapolates from seed points along edge strings except that it
can Jump over gaps' caused by unmatchable edge points. The
latter typically arise when left and right image edge points
fall outside the allowable orientation limit required for
matching (justified by the compatibility constraint and guided
by the disparity gradient limit, as in P:MF). This tends to
happen when the edge string meanders due to local image

. noise, or closely neighbouring edges cause interference in
the locations of Canny edge point locations. When small
gaps of this kind are crossed, left image edge points lacking
a match due to the gap in the right image do not have a
disparity value attached to them.

ORDERING CONSTRAINT

It sometimes happens, particularly in image regions with few
edges , that whole strings of edges points are incorrectly
matched using the figural continuity procedures outlined
above . A check is imposed to discover and remedy such
problems using the ordering constraint explicitly and
qualitatively. For example, suppose there exist strings A, B,
C. D in the left image, each with a strength that is the sum
of the strengths of the matches along them (not just length
of string). Then if the matches for these strings in the right
image violate the ordering constraint (figure 5), then the rule
is to kill the weakest strings that result in the ordering
constraint being satisfied. The primitives thereby 'released'
from matching are considered (along with others also
remaining unmatched) in subsequent stages.
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Figure 6 Performanceon a rock stereogram. (a) Grey level stereo images arrangedfor cross-eyedfusion. (b) Matched
Canny edge pointsfrom the left image codedfor relative depths withfar~=light and nearedark. (c) Smooth depth profile
obtainedfrom matches in b with the viewpointfrom the top left hand side with respect to the other images.
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Figure 7 Performance on a clutteredscene ofindustrial objects. (a) Grey level stereo images arrangedfor cross-eyed
fusion. (b) Canny edges for the left image. (c) Perspective view ofdepth data recovered by PMF using same program
parameters as for the rock infigure 5. (d) Plan view ofdepth data. (e) Some of the final 3D descriptions fined to the
depth data as recovered by the TINA system (Parrill et al.1987).
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The explicit use of the figural continuity and ordering
constraints makes it possible to regard the present
implementation as a blend of (1) PMF as it was originally
conceived in papers [1] and [2] (i.e, a simple within-DG limit
neighbourhood support algorithm); (2) Mayhew and Frisby's
(1979) STEREOEDGE algorithm (for explicit use of figural
continuity); and (3) the algorithm described by Baker (1982)
Baker and Binford (1981) which explicitly exploits the
ordering constraint. The original PMF exploited figural
continuity and ordering only implicitly (see paper [1]).

COMPUTE DISPARITY RANGE

Some of the remaining ambiguities can be resolved using the
ordering constraint to reset the allowable disparity range.
That is, matched strings are used to set disparity bounds
within which matches must be found for intervening
unmatched points if the ordering constraint is not to be
violated. This procedure has the advantage of using an
appropriate disparity range for each region of the image.

ALLOW CONTRAST-REVERSED MATCHES

Stereo projections do not always preserve the sign of edge
contrast. A light-to-dark edge in one image not infrequently
projects as a dark-to-light edge in the other image. An
example where this happens is at occlusion edges for which
the edge is seen against a light background from the vantage
point of one eye but against a dark background in the other
eye. Thus on the final iteration, matches are allowed between
left and right edge points ofreversed contrast.

HORIZONTAL EDGES

Horizontal edges present a special problem for stereo
matching due to the intractable nature of the matching
problem that they pose, viz. there are an infinite number of
possible 'solutions' to matching the points comprising
horizontal edges. Instead of being assigned a single disparity
value, each horizontal edge point in the left image, is
assigned a range of possible disparity values determined by
the size of the horizontal string in the other image which
could be matched with the point in question. These are used
in AIVRU's TINATOOL vision system by processes that
find best-fit geneotrical descriptions (see paper [11]).

PERFORMANCE EXAMPLES

Figures 6 and 7 show examples of the output achieved by
this implementation of the PMF algorithm.
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