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ABSTRACT

A new algorithm for stereo matching is presented, based on the
idea of imposing a limit on disparity gradients allowed in the
matched image. The matching problem will be expressed as
one of maximizing a certain function, subject to constraints.
Standard methods from optimization theory may then be used
to find a solution.
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Binocular stereo vision is the process by which three­
dimensional structure is recovered from a pair of images of a
scene taken from slightly different viewpoints. The difference
in positions causes relative displacements or disparities of
corresponding items in the images, and these disparities enable
the depth to be calculated by triangulation.

It is related to the degree to which the surface on which the two
points lie recedes from the observer; or, if the points lie on
different surfaces, to thedepth between those surfaces. The idea
of using a disparity gradient limit is that matches of
neighbouring primitives, when considered as a pair, should
have a small disparity gradient. Pollard et aZ2have developed
several algorithms, both iterative and noniterative, which
implement this idea, and they have demonstrated their
efficiency on a range of natural and synthetic images. These
algorithms, however, have little mathematical basis, and the
iterative versions have not been proved to converge. The aim
of this work was, therefore, to produce an implementation of
the idea of disparity-gradient limit based on optimization
theory.

CONSTRUCTING A POOL OF POSSIBLE
MATCHES

The algorithm to be presented is based on the idea of imposing
a limit on disparity gradients allowed in the matched image2,3.
The disparity gradient between a pair of matched points is
given by the ratio of the change in their disparity to the
distance between their locations in the monocular image
(Figure 1).

There are three main stages in any binocular stereo algorithm:
detecting and locating features to be matched, matching
features, and calculating depths. When the camera geometry is
known, the last of these stages is trivial. The method used for
the first stage has been described elsewhere-, so this paper will
be concerned with the second stage. It will assume that a set of
edge points, together with their orientations, has been extracted
from each image.

a c b o

It will be assumed that the cameras are set up so that
corresponding edges are constrained to lie in corresponding
rows. Edges are then allowed to match provided they have the
same contrast sign and similar orientations. The precise
definition of similar orientations is that the angles are either
within 30° of each other or lie within an 'orientation similarity'
limit derived from the disparity gradient limit

4(tane - tan lfJ)2 L 2< 'd
(tan e + tan <p)2 +4 (tan e- tan qJ)2 g

Where Ldg is the disparity gradient limit. This condition is
dependent on the edge orientation, the closer an edge is to
vertical in one image, the greater the range of potential
orientations that can arise in the other image.
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Figure 1. Definition of disparity gradient: at left image; b,
rightimage; c, cyclopean image
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Then a global measure of the goodness of the match is

To use optimization theory, it is necessary to find a function to
be maximized. In other words, a score must be defined for each
way of matching the images, so it is possible to say when a
match isa good one. Suppose that the images have been
matched. For edge i in the left image and edge j in the right
image, the decision variable Xii is defined by

x .. - {I if i matches j
I} - 0 otherwise

q(i J' k 1) ={I if di.sp~ty gradient limit is satisfied
'" 0 otherwise

For edges i and k in the left image and edges j and 1in the right
image, a compatibility factor q(ij,k,l) can be defined in some
way to represent the compatibility of matching i to j and k to
1. For example q could be defmed as
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F(x) = 1 q(i,j, k, l)XijXkl
i,j,k,l

where x =(xn, ..., XMN, ie the number of pairs of matches,
each weighted by its compatibility factor. This is the function
that will be maximized.

To apply optimization theory, the definition of the decision
variables xywill be extended to be the probability that edge i
matches edge i. Then the uniqueness constraint can be written

LXij s 1 for all i
j

LXij ~ 1 for all)
i

The following conditions must also hold

Xij ;::: 0 for all iJ
Xij = 0 if i is not allowed to matchj

The region in MN-dimensional space fefined by the above
conditions is called the feasible region. The problem is now to
find the point in the feasible region with the largest value of F.
IfF were convex , this maximum would occur at a vertex of the
feasible region. It can be shown4 that any vertex of this region
has the property that xg= 0 or 1 for alI ij. so a decision would
be made. Unfortunately, it is not clear whether F is convex or
not. In practice, however, this has not been a problem.

GRADIENT METHODS

The idea of a gradient method of solution is to begin with an
initial feasible solution and, at each iteration, to determine a
direction r in which to move so that by moving in this
direction the value of F is increased, while remaining within
the feasible region.

For the feasible region described above, the direction r must
satisfy

L rij ~ 0 for all i such that 1 Xij = 1
j j

Lrij s 0 for all} such that L Xij = 1
j i

rij ;::: 0 for all t.i. such thatXij = 0

rij =0 if i is not allowed to match j.

The 'best' direction is that which maximizes V F.r subject to
r.r = 1 and the conditions above. This is the direction in
which the surface slopes most steeply, but this does not
necessarily mean that moving in this direction will yield the
greatest increase in F, nor that moving in this direction at each
iteration will be the best strategy. It is, however, certainly a
good direction in which to move. Unfortunately , finding the
best direction is difficult because of the nonlinear constraint r.r

=1. An aproximation to the best direction can be found by
replacing this constraint by !)r~ = 1. and this (almost) linear
programming problem can be solved by the restricted basis
entry simplex methodS.

DESCRIPTION OF ALGORITHM

For ease of notation, several sets will be defined. Let

R = HI LjXij = I}

S ={JI LiXij = I}

Z = {(i,)) IXij =O}

1= {(i,)) I i is not allowed to matchj} .

To find r, the direction in which to move, the following
optimization problem must be solved at each iteraton:
maximize VF.r subject to

lrij s O(iE R)
j

l>ij s 0 (j E S)
i

rij ;::: o«i,)) E Z)

rij =O«i,)) E l)

Llrij 1= 1
iJ

It will be assumed that the compatibility factors q are

symmetric, that isq(i,j.k.I) = qtk, I, i.j). Then

VF = (On ..... OMN)
where

Qj =21 q(i,j, k, l) Xkl
k,l

IfeitherR ::J:. {I, ... , M} orS ::J:. {I, ... , N}. then the

solution to the problem can be found es follows

Let k,l be such that k eR, 1e Sand
Q/d =max Qg

ieR

j6S

Let r,t .u be such that (r,u) e Z, t eS and

Dnu =Qrt - QIU=max (Qij - QiIJ
(i,k'f=Z

jeS

Let s.v.w be such that (w.s) eZ, v ER and

Esvw =Qvs - Qws max (Qij - OJcj)
(kJ)eZ

iER



Note that, depending on R and S, some of these quantities may
not exist. Provided that R 'I: {I, ..., M} or S *" {l ,...,N},
however, at least one of these will exist. Then there are three
cases.

(i) If Qkl ~ 1l2Drtu , IhEsvw, then
rkt =1, rij = 0 for all (iJ) :t:: (k,n

(ii) If 112Drtu > uu, I/2Esvw , then
rit =1, rru=-1, rij =0 otherwise

(iii) If 112Esvw > on. I/2D rtu. then
rvs = I, rws = -1, rij = 0 otherwise

If R = {I, ..., M} and S = {I, ..., N}, then the problem is
harder. In this case, a possible direction can be found as
follows. Let r,t,u,v be such that (r.u) , (r,t) eZ and

Grtuv =Qrt - Qvr - Qru + Qvu
=max (Qij - Qil - Qkj + Qk1)

(i.n e Z
(kJ) e Z

Let w,x,y be such that (w,y), (z,x) e Z, (z,y) e I and

Hwxyz =Qwx - Qwy - Qzx
=max (Qij - Qil - Qki)

(i.n e Z
(kJ) E Z

There are then two cases

(iv) If 1/4Grtuv ~ 1/3Hwxyz, then
rrt =rvu =1, rru =rvt =-1, rij =0 otherwise

(v) If 1/3Hwxyz > 1/4Grtuv. then
rwx =1, rwy ="zx = -1, rij = 0 otherwise

Having chosen a direction r in which to move, it is now
necessary to fmd a distance Asuch that (x + Ar)belongs to the
feasible region and F(x + Ar) is as large as possible. In other
words, A must satisfy

L (xij + Arij) s 1 for all i
j

L (Xij + Arij) s 1 for allj
i
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(i) (1- ~XA:j , 1- ~Xil )

(li) Gru, 1- ~Xit )

(iii) Gws, 1-tXvj )
(iv) (Xru , XVI)

(v) (Xwy , Xu)

This method, although yielding an approximation to the best
direction, is clearly slow and highly nonparallel, since at each
iteration no more than four Xij are changed. It is possible,
however, to use the same ideas but increase the speed and
parallelism by doing the computation given above for each row
at the same time. This is possible because the images are
assumed to be such that corresponding edges lie in
corresponding rows .

CHOOSING AN INITIAL FEASIBLE SOLUTION

Since the function being maximized may be highly nonconvex
and have many local maxima, the starting point is important.
If the probabilities are set as equal as possible, the initial value
of the function should be small, and so the algorithm should
have a better chance of finding the global maximum. If the
starting point were near a local maximum a gradient algorithm
would be more likely to find that local maximum instead of the
global one. Initially, the probabilities were all set to liN
where

N =max (max # UI (iJ) e I}, max # {il (iJ) e I}
i j

Then certainly~ij ~ 1 for all i and~Xij ~ 1 for all j.
] I

This choice, however, meant that the algorithm spent a long
time increasing all the Xij so that the sums were nearer to one,
so the starting point now used is

where Ni =#U I(i ,j)e I}
and Mj=#{il(i ,j)el}

Then, again the inequalities are satisfied. This strategy seems
to be successful.

COMPATIBILITY FACTORS

The value of q(ij,k,l) should fall off as i and k (or j and 1)
move further apart. It is computationally convenient to define
a neighbourhood N(z) round each point i, and define q to be zero
ifj does not lie in N(z). The general form for q was taken to be

(Xij + Arij) ~ 0 for all iJ

and must maximize

F(X+Ar)-F(x) =A2Lrijrklq(i,j,k,l)+

2AL Xij rklq(i,j, k, I).

In the cases given, simple calculation yields the following
values for A.

{

p(i,j, k, I)

q(i,j, k, l) = ~+ d(i,j, k, I)
k e NCl),k "" i
leN(j),I""j
otherwise

where N(z) is the (2n + 1) x (2n + 1) window centred on i, and
d(ij,k,n is the square of the average of the distance between i
and k and the distance between j and 1. Several different
definitions for p(ij,k,l) were investigated.



C
· . k l) - {t ifGd <LdlP l,j, , - 0 otherwise

or

C
' i.k l)= {t.G1ILdt,p l,j, , 0

ifGd < Ldt,
otherwise
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violated by neighbouring points lying on different planes. The
results are summarized in Table 1.

Table 1. Results of algorithm on random-dot
stereograms

where Gdis the disparity gradient

RESULTS

The algorithm was implemented in C on a VAX lln50
running under Unix, and tested on a number of images both
real and synthesized, The first two pairs of images presented
here are random -dot stereograms, which enable quantitative
evaluation of the algorithm's performance, Each pair depicts
three planes: the bottom plane extends over the whole image.
while the top two planes occupy a square in the centre of the
image. The top plane is transparent. but the middle plane is
opaque. The images are presented for crosseyed viewing in
Figures 2 and 3 respectively. The disparities of the three

a'~i~\;f~~;:~;~~f:~ : b ....~..::..::.:~~.:::~.::...~::.::~:~:.;.::;.,:;:.:.~~::'!:'~~~~:'·':J'::':'~'::.':..::::·.~~:r:~::;·.:::~:.~~":.':L:.:'.:.:.~~::_.~::::..:::.:~:.~:.:~i..:.:.:~::.:~:::~:~~:::"~':~:~:::::::";:"~'.~:::
'.:i~:f;:fr{:;:m'r~; '.' ' .

Figure 2. Random-dot stereogram 1: a. right image;
b. left image

Figure 3. Random-dot stereogram 2: a, right image;
b, left image

planes are 0,1 and 2 in figure 2. and 0.1 and 3 in Figure 3.
Thus, in the second case the disparity gradient limit of 0.7 is

Stereogram Total number Number Nwnber % correctly
number of points matched left matched

wrongly unmatched

I 618 9 38 92
2 603 56 34 85

Figure 4. Synthesized pair of images: right image (left); and
left image (right)

Figure5. Intensity-coded depthfrom Figure4

A synthesised pair of images is shown in Figure 4. The result
of the algorithm on this pair is displayed intensity coded (bright
is near) in Figure 5 and is displayed as a perspective projection
from a different angle in Figure 6. Finally. a pair of real images
of a piece of rock is shown in Figure 7, and the result, intensity
coded. displayed in Figure 8.



Figure 6. Perspective view ofobjects in Figure 4

Figure 7. Pair of images ofrock: right image (left) ,
left image (right)
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Figure 8. Intensity-coded depthfrom Figure 7
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CONCLUSIONS

The algorithm has been seen to perform well on a range of real
and synthesized images, even when the disparity-gradient limit
is exceeded.
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