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Abstract

Burtand Julesz experimentally demonstrated that, in addition
to Panum's fusional area, a quantity defined by them and
nameddisparity gradient also plays a crucial part in deciding
whether the human visual system would be able to fuse the
images seen by the left and right eyes. The physical
meaning of this quantity remains obscure despite attempts to
interpret it in terms of depth gradient. Neverthele~s, it has
been found to be an effective selector of matches In stereo
correspondence algori~hms. A proof is .pro,:,ided that a
disparity gradient limit of less than 2 implies that the
matchesbetween the two images preserve the topology of the
images. The result, which is invariant ,unde~ rotations and
under relative as well as overall magnifications, holds for
pairs of points separated in any direction, not just along
epipolar lines. This in tum can be shown to prevent
correspondences being established between points which
would have to be located in three dimensions on a surface
invisibleto one eye, assuming opaque surfaces.
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1 Introduction

Binocular stereo VISIon entails reconstructing depth
information from two images of a three-dimensional (3-D)
scene taken from slightly different viewpoints. This
involves establishing correspondences between points
(solving the 'correspondence problem') and computing the
depthby triangulation. In comp.utervision, pr0'1~ed that the
camera geometry is known, this last step IS trivial, ll?d SO
solving the correspondenceproblem guarantees stereopsis,

In the case of human vision, there is also the concept of
binocularfusion, which is when a stereoscopically presented
image appears single, and this is not the same as stereopsis.
It is well known that stereopsis can occur with fusion (eg
depth perception despite diplopia), and fusion . ~ithout
stereopsis (eg in amblyopes). For computer VISIon, of
course, there is no concept of fusion. Burt and Julesz
(1980a, 1980b) conducted some interesting experiments to
investigate the effect of nearby points on binocular fusion.
They defined the disparity gradient (figure 1) between two
nearbypoints as the difference in their disparities divided,by
theirseparation in visual angle, and demonstrated that fUSIOn
of at least one point fails when this gradient exceeds a critical
value (approximately 1). Although their experiments were
necessarily concerned with horizontal disparities only (since
thearrangementof human eyes means that vertical disparities
are usually very small), the definition of disparity gradient is
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Figure 1. Vector rL in the left image and the corresponding
vector rR in the right image. The disparity gradient is defined
as IrL - 'RVl l2l' L +'R1.

not restricted to points with only horizontal disparities.
There will be situations in computer vision (eg large
vergence and/or gaze angles) where points will have both
horizontal and vertical disparities, so it is useful to keep the
concept of disparity general and not restrict the considerations
to horizontal disparities only.

Despite the fact that this limit applies to fusion, v.:hich, is
meaningless in a computer vision conte~t, the. disparity
gradient limit has provided a powerful disambiguator of
correspondences in several stereo algorithms (Lloyd 1984;
Pollard et al 1985). The success of these algorithms is
perhaps surprising: why should a constraint on human fusion
be a good constraint for computer stereopsis? Equally~ w~y

should the disparity gradient limit be a good constraint In

human vision? There are certainly some empirical reasons:
most false matches will cause the disparity gradient limit to
be exceeded and so will be rejected by the algorithm, whereas
most pairs of correct matches will satisfy the disparity
gradient limit (pollard et al 1985) . E--:en ~n surf~ces

containing apirs of points exceeding the dispanty gradient
limited (consider, for example, a plane inclined away from
the viewer so that it is close to horizontal), there will still be
many pairs of points with disparity gradient less than the
limit, and so the algorithm may still be able to solve the
correspondence problem correctly. While not disputing in
any way the success of these algorithms. we were, however,
still unconvinced of the reasons for this success.
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We therefore propose an explanation of the disparity gradient
limit based on the physics of image formation . This
suggests a reason why it is sensible, both for human fusion
and for computer stereopsis, to impose a disparity gradient
limit. We shall show that imposing a disparity gradient
limit of less than 2 ensures that no matches will be made
between points that would have to be located in space on a
surface invisible to one eye (assuming opaque surfaces).
Observe that the converse (that all pairs of points on a non­
self-occluding opaque surface satisfy the disparity gradient
limit) does not follow; the example mentioned earlier of a
plane inclined away from the viewer would be an obvious
counter example. Imposing a disparity gradient limit is a
conservative policy; it prevents false matches, but also
disallows some correct ones. Bun and Julesz suggest a figure
of I, although some of their experimental data might suggest
a higher figure. This is still safely below 2 and in perfect
accord with our theory. It is interesting to note that, when
restricted to pairs of points lying on the same epipolar line, a
disparity gradient limit of less than 2 reduces to the familiar
'ordering constraint' used in many stereo algorithms, which
demands that points on an epipolar line lie in the same order
in both images.

We shall, in fact, show that imposing a disparity gradient
limit of less than 2 ensures that the correspondence between
the two images preserves their topology. In other words:

(a) each point in the left image corresponds to a unique point
in the right image and vice versa;

(b) ifwe were given one image painted on a rubber sheet, we
could, without tearing the shet or glueing it to itself, deform
it so that we obtained the other image.

This may seem very obscure, but if we consider how the two
images arise , things may become clearer. Let us suppose
that we have a continuous non-self-occluding surface as in
figure 2. Now, for each eye, the projection which transforms
the surface into the image preserves the topology, and so each
image must have the same topology as the surface does.
Hence they must have the same topology as each other.
Conversely, if we have a self-occluding surface as in figure 3,
the appropriate matches will not preserve the topology. This
can be seen quite easily by considering the point E, where the
ray from D intersects the surface again. In the left eye the
image of this point will appear in the same place as the
image of D, that is DL' whereas the two will be distinct in
the right image. So DL in the left image corresponds to two
points (DR and Ea) in the right image, and this implies that
the topology cannot be preserved since condition (a) above
would be violated.

2 Proof

Suppose that we have two images IL and IR and a
correspondence f between them . So, for each point P in IL'
we know the point or points in IR corresponding to P.
Suppose further that f obeys the disparity gradient limit of 2k
(where k« I), that is, ifPI and P2 are points in IL' then

In order to prove that the topology is preserved, we need to
show that
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(i) f is one-to-one (ie each point in IR corresponds to a
unique point in IU:
(ii) f-l is one -to-one (ie each point in IL corresponds to a
unique point in Ia);
(iii) f is continuous (roughly, nearby points in IR correspond
to nearby points in 10;
(iv) f-l is continuous (roughly, nearby points in IL
correspond to nearby points in IR>.

Since the disparity gradient limit is symmetric, we need only
prove (i) and (iii), and then (ii) and (iv) will follow by
symmetry.

In order to prove (i), suppose that a single point PR in IR
corresponds to two points in PlL and P2L in IL. Consider
the disparity gradient, ID, between this pair of matches :

But this is not allowed because we are supposing that all the
disparity gradients are less than 2. So PR must correspond
to a unique point PL in IL: that is, f is one-to-one.

We now need to prove that f is continuous. Suppose that PI
and P2 are two distinct points in IL and let us write
fL = PI - P2 and fR = f(Pl) - f(P2)' In order to prove
continuity we need to show that whatever smal positive
number e we are given, we can always find another positive
number d so that

IfLI < d implies that IrRI < e .

The proof which follows is straightforward but technical. We
simply suppose that IfLI < d and apply the fact that f obeys
the disparity gradient limit of 2k with k < 1, and deduce that

2l /2(I + k)2
I'RI < d 2

l-k

Turning this round, we see that, given e, we simply choose

d =e_2-_1:-/2_(--:-I-~k2_)
(l +k)2

and we are done. It is now clear why we need to stipulate
that k < 1.

We now give the details of the proof.

Let us write fL = (XL.YU and '"R = (XR ,YR). Suppose that
IfLI < d, then txLI, lyLI < d. Now the disparity gradient limit
can be rewritten

(XL - XR)2 + (YL - YR)2 ~

e[(XL + XR)2 + (YL +YR)2J
or

xi (e-l )+2XLXR(e+1)+
X~ (e-1) +e(YL +YR)2_ (YL -YR)2 ~ O.
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Figure 2 (Above) Points A, B, and C on a surface S (A, B, C not meant to lie on the intersection of the surface S and a plane) and their
images. (Below) The two images are topologically equivalent.
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Figure 3 (Above) Surface S of figure 2. In addition, points D and E and a tangent ray passing through the left eye are also shown.
(Below) The topologies of the two images are clearly not equivalent,



This is a quadratic in XR, and the coefficient of xi is
negative. The above inequality can only be satisfied when
there are two real roots and XR lies between them. The
condition for the quadratic to have real roots is that

4xl (P+ 1)2-

4(k2-1)[xl (k2 - 1) + k2
(Y L +YR)2-(YL -YR)2] ~ 0

or

- (I - eYyi +2YLYR (1- e) (1 +e) +
4eX~ - (l_e)2Y~ ~ o.

Again, this is a quadratic in YR with leading coefficient
negative. It has two real roots, so the inequality is satisfied
when .

2YL (1 - k 4
) - 4k (1 - k 2

) Ird
2(I-kl)2 ~YR

2YL (1 - k4) + 4k (1 - k2
) Ird

YRs 2(1-k'-'j2

or
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3 Discussion

In their attempt to incorporate the notion of disparity gradient
limit in Panum's fusional area, Burt and Julesz (1980a)
mention a "cone-shaped forbidden zone, symmetric about the
line of sight" around a point object. This is readily
understood in terms of our explanation if the cone is taken to
be defined by the surface k = 1 passing through the point.
(The extended lines of sight to each eye lie on this surface,
for instance.) Then the matches between the left and the right
images of the original point (at the tip of the cone) and other
points - some inside and some outside the cone - will not, in
general, preserve the topology of the images.

Our interpretation of the disparity gradient limit constraint in
view of what we have said so far is that the human visual
system expects to find surfaces, and that it expects the
surfaces to be opaque. If a vision system is to solve the
stereo correspondence problem before interpolating surfaces
through the three-dimensional points so computed, the
equivalent topology (or disparity gradient limit) constraint
along with this interpretation would guarantee that no part of
the surface will be obscured by another: a very powerful
guarantee ensuring no conflict between stereo matching and
surface interpolation at a subsequent stage of processing.

4 Conclusion

So certainly

The tworoots of the quadratic in XR are

(1+k)2
IYRI ~ d 2 •

l-k

We have proved that a disparity gradient limit of less than 2
implies topological equivalence between left and right
images. Further, we have shown that this guarantees that a
group of three-dimensional points obeying the disparity
gradient limit cannot lie on a surface which would have been
obscured to one eye. Incorporation of the disparity gradient
limit constraint in stereo matching makes it possible to
proceed to surface interpolation in a bottom-up fashion.

-2xL(I+k2)±2{4k 2xL2_Ck2_1)[k2CYL+YR)2_CYL-YR)2JP/2 R fe erences
2(1-k2)

.':

Now

(since the left-hand side is a quadratic in YR with maximum
valuethe expression on the right-hand side) so

1/2

---"""":""7'''-7""'l':'''"-_.....L- < i 1+ k)2
- 1=7i2

Hence

So, given e > 0, take d = e[2-1/2(1-k2)/(I+k)2], and then 11'1.1
< d implies that 1"R1 < e. Hence f is continuous. This is the
endof the proof.

Note that the result is invariant to rotations and to relative as
well as overall magnifications.
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