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The problems of extracting 3D structure from stereo or motion
parameters from optic flow are now analytically tractable but
numerically ill-conditioned. A variational principle is
proposed Whichalleviates ill-conditioning and saturates rapidly
with data so that even a small excess (over a minimal number)
ofdata points yields accurate results. It involves no adjustable
parameters (unlike many applications of the regularization
theory) and no assumptions about measurement errors, which,
in fact. it seeks to estimate and minimize. The technique is
illustrated with image resolutions varying from 1024 to 128
pixels square, using between 6 and 30 data points (5 data
points define a unique solution) perturbed by at most 0.2
pixels . The error in the computed direction of translation was
2.7 deg in the worst case (128 x 128 pixels. 15 data points). It
was 1.2 deg with only six data points for an image 1024
square.
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This will not determine ax(i) uniquely, of course, and so we
impose a subsidiary condition and select that ax(i) in each
instance i for which the size of the correction

is the smallest. That is.

f[x(i) + 5x(z).a] =0 lox(i)12 minimum "'i;/ i (3)

By defining the size of the correction by Equation (2), all the
components of a data measurement have been put on an equal
footing. It is also implied that the absolute correction is the
most meaningful. While this is so in our application domain
(the measured data are the coordinates of image points). these
assumptions are not necessarily universal . and. in general. the
size of the correction must be defined in a way appropriate to
the problem at hand. If the ox values are required to obey
constraints. the equation above must be solved subject to those
constraints.

OXk(z) = gk[X(I). a] k === 1..... m (4)

Let the kth component of the formal solution of Equation (3)
be written as

Neglecting second- and higher-order terms in the Taylor series
of expansion offin Equation (3) above. it can be determined
that

The low-level computer vision problems of determining
camera geometry from stereo images and object motion and
structure from optic flow (or a time sequence of images) are ill­
conditioned. Tsai and Hyang (1984), for example, reported a
staggering 54% error in the model parameters for only a 1%
error in the data. Fang and Huang (1984) also observed similar
symptoms of numerical instability.

Researchers have responded to this difficulty (for example.
Yasumoto and Medioni. 1985) by using the regularization
techinque (Tikhonov and Arsenin, 1977), following the lead of
Poggio (Poggio T, 1985). This involves additional
constraints, which are quite often heuristic. and each constraint
entails a weighting coefficient. which, in practice at least, has
to be chosen judiciously if not with some degree of
foreknowledge.

In this paper. a variational principle is formulated which
involves no additional constraints. has no adjustable parameters
(such as weighting coefficients). 'corrects' each data point, and
yields errors entirely in terms of the image measurables. As
one usually knows something about the accuracy of the device,
the precision of edge-location, etc. one canjudge the quality of
the computed solution from the estimated measurement error.

g(x,a) = - fVj/IVj12

Then
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is the minimum correction to x(z) given a, and
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VARIATIONAL PRINCIPLE

Let the model equation be f(x, a) =O. where x denotes a data
point and a denotes the model parameters. Allowing for error
in the data measurements, a correction Sx(i) is sought to
satisfy exactly

is the minimum total correction to the sampled data, given a.
This. then. is the varational quantity to be minimized with
respect to the latter, the model parameters. It generates that
solution which, for the smallest correction to the sampled data,
enables the model equation to be satisfied exactly at each
(corrected) data point.

f[x(z) + ox(z). a] = 0 fori=1 .2•...,N (1)
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Application of variational principle to sample problem

I I

Noof Image 1 - e.e'
[ +:(II-I,')2J

cos-1(e.e') 1-T.T'
[~(TI-T,')2J

cos-1(T.T')

datapoints resolution (<leg) (deg)

6 10242 2.4 x 10-7 6.9 x 10-4 0.040 2.3 x 10-4 5.0 x 10-3 1.2

7 10242 2.7 x 10-7 7.3 x 10-4 0.042 2.3 x 10-4 5.0 x 10-3 1.2

8 10242 3.3 x 10-7 8.1 x 10-4 0.047 1.1 x 10-4 3.4 x 10-3 0.85

9 10242 2.5 x 10-7 7.1 x 10-4 0.040 4.9 x 10-5 2.2 x 10-3 0.57

10 10242 1.7 x 10-7 5.9 x 10-4 0.034 1.6 x 10-6 1.0 x 10-5 0.10

15 10242 1.3 x 10-7 5.0 x 10-4 0.029 2.1 x 10-5 1.4 x 10-3 0.37

30 10242 1.7 x 10-9 5.9 x 10-5 0.0034 6.5 x 10-7 2.4 x 10-4 0.066

15 5122 6.3 x 10-7 1.1 x 10.3 0.064 1.9 x 10-5 1.4 x 10-3 0.36

15 2562 3.4 x 10-6 2.6 x 10-3 0.15 1.2 x 10-4 3.0 x 10-3 0.9

15 1282 9.2 x 10-6 4.3 x 10-3 0.25 1.1 x 10-3 9.3 x 10-3 2.7

Computed solution (e',T') and true solution (e,T):. [e.e=e'.e' =1, T.~ - TT =1] . .
Animage is a unitsquare. unitdistance from theoptiC centre. Theerror15 a uniformlydistnbuted random value bounded by IAxI
< 0.2 pixels, IAyl < 0.2pixels. As a result, the absolute of theerror doubles as the image resolution halves (from 1024 value to
512 etc). Theresults correspond to Tl:T2:T3= 1:0.1:0.2 and the rotationR = Rz(0.03)Ry(0.2)Rz(0.05), the angles being in
radians. The depth varied between 5 and 100interocular units.

EXAMPLE

Image coordinates x and x' in the left and right images of a
stereo pair corresponding to every scene point obey the
relationl •6•7

2(eje2 +eOej)
2 2 2 2eo -ej +e2 -ej

2(e2ej - eOej)

where X'3. X3 = 1. The primed coordinates refer to the right
image and the unprimed to the left. The matrix Q = RS is
defined in terms of the rotation matrix R and the
antisymmetric matrix S related to the translation vector T =
(TI. T2, T3) by

The aim is to determine the matrices Rand S of the stereo
geometry. given N data points. This is found to be an ill­
conditioned problem. That is. errors in the data are amplified
whenthe model parameters aredetermined from the (imperfect)
~ta. We have usedg of Equation (5) to applyour method to
this problem. Each pointwas perturbed by a random amount
~~ ho~onta1ly andvertically) bounded by ± 0.2 pixel. The
distribution of pertubation over the points was uniform. The
results are summarized in Table 1. The rotation matrix was
parametrize? using Eulerparameters'', which arereal unlike the
Cayley-Klein parameters) and are distinct from Euler angles.
For completeness,

perspectiveprojection beingassumed.

3

"" x~Oox. =0.Li I ':.til 1
i .j = l

Unlike some applications of the regularization theory, the
minimum correction principle involves no adjustable
parameters . In fact, it seeks to estimate data errors by
minimizing them with respect to the model parameters and
requiresno assumptions to be made about them. The principle
has been illustrated with various image resolutions, from 1024
to 128 pixels square, using between six and 30 data points
perturbed by at most 0.2 pixels. The error in the computed
direction of translation was 2.7 deg in the worst case (image
resolution 128 x 128 with 15 data points. It was 1.2 deg with
only six data points for an image 1024 square. (It should be
recalled that five data points are needed to even define a
solution.) The accuracy of the rotational parameters is much
greater, as observed by Tsai and Huang (1984). (There is an
explanation for this behaviour, although it is not directly

A variational principle, the minimum correction principle, has
been constructed to deal with ill-conditioned problems. A
minimum correction to the sampled data is sought, such that
the corrected data obeys exactly the model equation in each
instance (or. to be precise. through the first order in the
corrections. at least).

RESULTS AND CONCLUSIONS

2 2 2 2 1
where eo +ej +e2 +ej = . Since Equation 8 clearly
leaves the overall scale of T undetermined, it was fixed by
setting T.T =1.
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Table 2. Comparison of least squares method
(singular value decomposition based) and
minimum correction principle for different field of
view angles.

Resolution No of tan a=0.5 tan a=0.25
matches -------------------.--- -------....--._----------

Least sq Min corr Least sq Min corr

1024 6 1.2 1.8
1024 7 1.2 1.7
1024 8 0.9 1.2
1024 9 64 0.6 69 1.0
1024 10 1.7 0.1 7.7 1.1
1024 15 0.3 0.4 2.7 1.2
1024 30 0.5 0.07 0.4 ·0.05

512 15 0.3 0.4 1.0 1.1
256 15 10.0 0.9 74 1.1
128 15 64 2.7 141 1.0

[tan e = (1/2) image width (or height)/focal length]'. Camera
geometry and data errors are as in Table 1.

connected with this work. The variation with respect to T,
subject to a normalization constraint, can be performed
analytically in both methods. The result is that T has to be an
eigenvector of a matrix depending on the data measurements
and R; hence the observed behaviour.) The four Euler
parameters are characterized by a direction in a 4D Euclidean
space. The error in the computed direction (of rotation) was
found to be minuscule (0.25 deg at most). No compelling
theoretical grounds have yet been found that might explain
why this method works so well. To this extent, it remains an
empirical method.

The method is numerically stable and saturates rapidly, so that
a single extra data point usually suffices. It is insensitive to
the addition or removal of data points (stability). The
numerical value of the functional E is the estimated total error
in the sampled data. For 'true' model parameters, the correction
to each component of data is just the negative of the error in
its measured value. Knowing the precision of the data
measurements a priori (from factors like resolution,
quantization, device accuracy, etc), one can judge the solution
quality by comparing these two quantities. For example, a
higher than expencted value of E(i) can expose a rogue data
point.

When the exact solution of the model Equation (5) with
corrected data is impracticable, a linear approximation (keeping
only constants and linear terms in ax) can be made. The stereo
and motion results above were obtained using this
approximation.

Our error measures are independent of the laboratory coordinate
frame. To compare the performance of the varational principle
with other methods, a conventional least-squares calculation
(using singular value decomposition) was performed for two
different field-of-view angles. The results are compared in
Table 2. While the variational method produces smaller errors,
the more striking finding is that the results of the least-squares
method look far bettwer than one might have expected, given

the notoriety of this particular problem. The importance of
choosing appropriate (ie coordinate frame invariant) error
measures to evaluate and compare methods cannot be
overemphasized.

Although this method entails more work, it seems to handle
adequately the ill-conditioned problem of determining stereo
geometry even with a single extra data point. Certain
'degenerate' configurations of data points, as pointed out by
Longuet-Higgins (1984) and Tsai and Huang (1984), cause the
'8-point algorithm I 1.7 for solving for the eight ratios of Q in
Equation (8) to break down. The method described here does
not suffer from this problem as the variation is performed
directly with respect to the parameters of rotation and
translation.
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