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ABSTRACT

It is sometimes desirable to compute depth from
unregistered pairs of images. I show that it is
possible to calculate the two 'epicentres' and the
relation governing pairs of epipolar lines. given
8 corresponding points in the two images in any
coordinate system. This reduces the matching problem to
one dimensional searches along pairs of epipolar lines
and can be readily automated using any stereo algorithm.
D epth. however. does not seem to be derivable without
extra information. I show how to compute depth in two
such instances. each involving two 'pieces' of information.

1. INTRODUCTION

One often encounters unregistered pairs of stereo
images (e.g. in microscopy) from which three
dimensional information is nevertheless desired. This
provided the motivation for the work reported here.
Longuet-Higgins (1981) has shown that the camera
geometry is fixed (assuming perspective projection) by the
coordinates of 8 corresponding points in a certain
coordinate frame. The latter entails knowledge of the
'natural origins' (defined as the point where the
respective optic axis meets the image plane) and the
orientations of both the image coordinate systems - in
other words, the registration information. He also gave
an algorithm to compute depth given this information.
When images are unregistered, however, neither the
natural origins nor the relative image orientation may
be known. To what extent can one then succeed in
recovering Structure (depth)?

I show that it is possible in the absence of any
registration information whatever (i.e., given just the 8
corresponding points in arbitrary image coordinate
systems) to work out the location of the 'epicentres' 
where the interoccular axis intersects the image planes and
through which all epipolar lines pass - and the relation
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governing pairs of epipolar lines (defined in section 4),
one in each image. This reduces the rest of the matching
problem to one dimensional searches along pairs of
epipolar lines - which can be automated using any stereo
algorithm. Although it seems that structure cannot be
inferred from the image data alone in the absence of
any registration information whatever, full registration
information is also not necessary. For example, given
either (a) the direction of displacement (two direction
cosines) of one camera with respect to the optic axis of
the other, or, (b) the orientation of the optic axis (two
angles) of one camera with respect to that of the other, I
show how structure can be recovered.

2. BACKGROUND

I keep to the notation used by Longuet-Higgins (1981).
Let a point in the scene have 3D coordinates
(Xl ;XZ,X3) and (X'1,X'Z,X'3) with respect to the left
and the right optic centres. Then its left and right image
coordinates (measured from the natural origins) are
(Xl ,X2) (X1/X3,X~/X3)' and (X'l,X'V
(X'l/X'3,x'z'X'3) , in the units of their respective focal
lengths. Thus image coordinates x 3 = 1 = x'3' so that
Xi =XJX3 and x ', =X'iIX'3 (ij = 1,2,3).

Let the right camera position and orientation be obtained
by displacing the left camera by a vector t and then
rotating it so that its new orientation can be obtained from
the old by applying the the rotation matrix R. Then
the two sets of 3D coordinates are related by
X'j = RjI,(XI; - tl;), implicit summation convention
implied hereinafter. Now from the cartesian components
of t, construct an antisymmetric matrix

Longuet-Higgins shows that the matrix Q = RS satisfies
the relations
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and hence

(i ,j=I,2,3) (1) Q"3I = Q3I + r",

Q" 32= Q32 + S',

Q" 33 =Q33 + to + t' 0 + v;

(7e)

(7t)

(7g)

3. TRANSFORMATION UNDER ROTATION AND
TRANSLAnON

we immediately see that the image pair still satisfies an
equation of the form (2) but with

Now consider a rotation of the right image (described by
the rotation matrix Rz·(g» about its optic axis - the z'
axis - by some angle •g' as introducing registration error
in the orientation. By writing (2) as a matrix equation

4. EPICENTRES AND EPIPOLAR LINES

Combined rotations and translations of the image
coordinate systems can be readily described by replacing
Q in (7)-(9) with Q' of (5). The image coordinates,
therefore, always obey a relation of the form (2), or
equivalently, (3), whatever the coordinate system.
Using this observation, I show how to work out the
locations of the epicentres and the relation governing
pairs of epipolar lines.

i.e.,

[QU QI2 Qu" JQ~Q"= Q21 Q22 Ql3 + S . (8)

Q31 + r' Q32+ S' Q33 + to + t'0 + v

Here

[~J = [Qn Q12] [UI] , (9a)
S Q2I Q22 U2

[ J [ J[Q u Q I~]r' s' = U'I U'2 Q21 Q22 ' (9b)

to =Q3I UI + Q32 U2, (9c)

t' 0 = u' IQ 13 + u' 2Q23, (9d)

and

v = r'ul + s'U2= u'Ir + u' 2s. (ge)

(4)

(3)

(2)(i ,j=I,2,3)

X'T Q x = 0;

(R z.(g)x ')T(R .{g)Q)x =0,

i.e.,

for any point. Notice that (1) and (2) continue to hold
under image magnification and length-scale changes to
the displacement t. For convenience, one chooses I t I =
1. Given eight independent pairs of corresponding
points - barring special cases (see Longuet-Higgins
(1984» -, it is straightforward to compute the 8
independent ratios of the elements of Q as solutions to
an 8 by 8 linear simultaneous system of equations. In the
same paper, Longuet-Higgins also shows how to
extract R and t (from Q), and hence structure.

I;'iQ"ij I;j =0, or, (1;')T Q" I; = 0; (7)

All that needs to be done to get things right is to absorb
the extra rotation in R, i.e.,

Next we consider the effect of displacing the image
origins by (u l,u2) and (u' loU' 2) in the left and the right
images respectively. Then Xi ~ ~i = Xi - Ui' and
X'i ~ I;'i = Xi - u'j, (i=I,2,3; U3 = U'3 = 0). Starting
with (2) yields, by algebraic manipulation, the relation

Where the interoccular axis intersects the image planes
are the two epicentres. Now imagine a family of
planes passing through the interoccular axis. Each such
plane intersects each image plane in a straight line
(which naturally passes through the respective epicentre),
giving rise to pairs of epipolar lines. Let the left and
the right epicentres be located at (1tI ,1t2) and
(1t'1 ,1t'2). The equation of a straight line of slope m
passing through (1tI ,1t2) is (e;2 - 1t2) = m (e;I - 1t1)'
Similarly, denoting by m' the slope of the corresponding
epipolar line, the equation of the latter is
(e;'2 - 1t'2) = m' (e;'1 -1t'I)' [The geometric motivation
presented here is not essential. One can simply postulate
the existence of epicentres and epipolar lines and the
arguments go through.] Now any point on a certain
epipolar line in one image can match any point on the
corresponding epipolar line in the other image. Given
that all matched points obey (7), one obtains by inserting
for 1;'2 and e;2 from the linear equations above into the
matrix representation of (7), that

(6)

(5)

(7a)

(7b)

(7c)

(7d)

R ~ [R.,(g)R].

Q ~ Q' = Rz·(g)Q·

U3 =°=U'3,

Q"ij = Qjj' (i,j=1,2)

Q" 13 = Q 13 + r ,

Q"23=Q23+ S,

where
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where (P l' pz) and (P'I' P'z) are the epicentres in the
natural coordinate system, an alternative form of Q" can
also be given:

for all values of ~I and ~'I ' The left hand side is a
second order inhomogeneous polynomial in ~I and ~'I

and can vanish identically if and only if the coefficient
of each term vanishes. This yields four equations. The
first of them, arising from the vanishing coefficient of the
(~I~'I) term, immediately gives the relation

and

Q [PI' P2' I]T = 0, (15a)

governing the slopes of a pair of epipolar lines. Note
that it is independent of the normalisation of Q". The
solution to the rest of the matching problem can be
mechanised by the use of any stereo algorithm.

m = -(Q" 11 + m'Q"21)/(Q" 12 + m'Q"2z) (11) Q"jj = Qjj' (i ,j =1,2)

Q"j3 = Qi1(ul - PI) + Q;z{u2 - P2), (i=I ,2)

Q" 3j = (U'1 - P'I)QIi + (u' 2 - P' Z}Q2j, (i=1,2)

Q" 33 = (U'I - P' I)Q" 13 + (u' 2 - P' 2)Q"23'

= Q"31(UI - PI) + Q"32(u2 - P2) ' (17)

Similarly, the condition that the coefficient of the term in
~I vanish yields

[
Q::11 Q::121 [XIJ = _ [Q:: 131 .
Q 21 Q 22J X2 Q 23J (12)

That the constant term also vanishes can be verified by
inserting the coordinates of the two epicentres in (7) and
using (12) and (13). In the process, one obtains two
interesting equations - one for each epicentre:

The condition that the coefficient of the term in ~'I must
vanish yields, after substituting (11) for m, a polynomial
in m' which must vanish. Equating the coefficient of
each power of m' to zero gives two linear inhomogeneous
equations in the two unknowns XI and X2:

QI2 = t~ll - t 1R13,

Q22 = t~21 - t 1R23· (18)

QII = t2RI3 - t~12'

Q21 = t 2R 23 - t~ n,

It is possible to recover structure, however, given
either (a) the direction of displacement of one camera
with respect to the optic axis of the other, or, (b) the
orientation of the optic axis of one camera with respect
to that of the other. Note that Qjj =Q"jj, (i ,j=I,2). From
the image data. therefore, one can obtain three ratios
between these four elements . Now, from Q=RS,

Longuet-Higgins gives a method of recovering structure
from Q. He also points out three equations relating
the diagonal and the off-diagonal elements of the matrix
QT Q (his eqn. (17)), the rotation matrix dropping out in
the process. Three equations are not sufficient to
determine the four unknowns UI, u2' U'I and u' 2 needed
to recover Q from (8) or (17). Thus given Q" alone, it
does not seem possible to recover Q (whence structure).

5. SCENE RECONSTRUCfION

(14)

(13)

[7t'h x'2, I]Q" = 0,

[
Q" Q" 1

[x\ 7t'2] Q":: Q" ::J = - [Q"31 Q" 32] .

and

implying that

(15)
Given R, and using R i xR j = R k» (i ,j ,k cyclic
permutations of 1,2,3), where R .. refers to the mth row
of R regarded as a vector, (18) yields

This serves as a check on the accuracy of the data and the
calculations.

Starting with (3) and using the equivalents of (14) and .
(15) in the 'natural' coordinate system, i.e.,

[P'1o P'2, I]Q = 0, (14a)

Alternatively, observing that the last row and column of
Q" in (8) are linear combinations of the rows and
columns of Q, it is readily seen that ded Q" I = °if and
only if ded Q I = 0. That ded Q I =°follows from the
fact that ded Q I = ded R I.ded S I, and it can be verified
that ded S I = 0.

detl Q" I = 0. (16)
t I = (R llQ22 - R 21Q 12)/R 32'

t 2 = (R 12Q21 - R nQll)/R 31,

t 3 = (R 13Q21 - R 23Q ll)/R 31'

= (R 13Q22-R 23Q12)1R 32· (19)

The two expressions for t3 in (19) provide an accuracy
check. More importantly, it can happen that the right
image (say) was rotated about its original position. This
corresponds to an unknown rotation about the z' axis 
represented by R z' (g) , g being the angle. The two
expressions for t 3 then force a constraint on tan (g). To
see this, write the final rotation matrix as

R -t [Rz{g)R],
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where R is known (for example, (Arfken 1970». That is,

[

cos (g)

R ~ -Si~(g)

sin (g)

cos (g)

o
(20)

Every relationship following from the equation
R ixR j = R b (i,j ,k cyclic permutations of 1,2,3) gives

al + hi + f I(al)f z(b l ) = O. (27)

Since f I(al) and f z(b l) are linear functions of a l and b,
respectively, (27) takes the form

or

Equating the two expressions for t 3 in (19) and
substituting for the new R from (20), one obtains

tan(g)=-alb, (21)

a = (R 13Q21 - R 23Qll )/R 31 - (R 13Q 22 - R 23Q12)IR32'

b = (R 23Q21 + R 13Qll)IR 31 - (R 23Q22 + R 13QdlR 32'

There are two possible solutions for g, given tan (g). If
the two images are coarsely aligned (by eye, say) then
the small angle solution is the desired solution.

where

and

CI = t; ,
c2 = (t2 + axtl)(t l + ay tz) + ayt;,

C3 = (tz + axt l)(tl + ay t2) + axt;,

(28)

(28a)

(28b)

(28c)

and

is a linear function of b i - Then

(29a)

(28d)

n l = axnz, nz = t 3/(t2 + axt l),

n3 = ayn4' n4 = t 3/(t l + ayt2);

where

at [ay~hlh2 - h 3h4] +

a? [ay;(elh z + hle2) - (e3h4 + h3e4)] +

at[ay~(dlhz + eleZ + h ld2) - (d 3h4 + e3e4 + h 3d4)] +

al[a;(d le2+eld2) - (d 3e4 + e3d4)] +

[ay~(dldz) - d 3d4] =0 ; (29)

There is now the last piece of unused information, the
ratio Q 22IQII = ayx (measured). Writing this out
explicitly, squaring it [to get rid of the square- roots from
(24) and (25)], and using (22)-(28), one obtains a fourth
degree polynomial equation in al :

(24)

Rtl +Rt2 +Rt3 = 1, and Rfl +Rf2 +Rf3 = 1

imply

is a linear function of ai- Similarly, denoting the ratio
Q22/Q21 byay (measured), and setting R 211R 22= b l and
Rd R 22 = b 2' it can be verified that

Next consider known displacement (t 1> t 2' t 3)' Denoting
the ratio Q lllQ 12 by ax (computed from data
measurement), and setting R lllR 12 =a I and R 13IR II =a2,
it can be readily shown that

a2 = t3(al + ax)/(t2 + axtl) =f I(al) (22)

Rf2 = (1 + bt + n(b l) )-1, (25)

The rotation matrix R is characterised by the four
unknowns R n- R 22' a 1 and b1> and has the form

where

[

R 11 aiR 11 f I(a l)R II

R = b lR 22 R 22 f2(b l)R2Z,

R 3l R 3Z R 33

R 31 =R llR n[a Ifz(b l) - f leal)],

R 3Z = R llR db If l (a l) - f2(b l)],

(26)

(26a)

(26b)

d l = (t 3 - tlnl)Z,

d z = (1 + nf)cf + 2n3n4c3c 4 + (1 + nl)cl,

d 3=(1+nt),

d 4 = [(t3 - tln4)C4 - n3c3trl2; (29b)

el = -2tln2(t3 -:- tlnl),

e2 =2[(I+n; )Clc3+n3nic lC 4-CzC3)-C2c4(I+nl )],

and and

(26c)
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h2=(1 + nr)c[ - 2clc2n3n4 + (1 + nl)ci.

h 3 = (l + ni).

h4 = [cln3tl + c2(t3 - tln4)f. (29d)

Efficient subroutines exist (e.g. NAG) for obtaining the
four roots of the polynomial. Having obtained a I. R can
be calculated using (22)- (26) and (28). Since R is real.
only real roots are of interest. Of the real roots. only that
which yields positive depth (both X 3 and X'3 > 0) for all
points is acceptable. Empirically. the polynomial always
appears to have two real roots. Each root has a single
combination of the signs of R II and R 22 which yields
positive depths for all data points. The nonveridical
solution, however. produces a large origin shift (typically
five times the image width) in one image. and small
depths (typically a few tenths of the interoccular distance).
If the positions of the natural origins are known even
roughly (e.g.• they may be known to lie somewhere within
the pictures). the veridical solution can be chosen quite
unambiguously.

Given t it is thus possible to compute R. and vice versa.
Hence Q can also be computed. From (8) or (17). after
rescaling Q". the unknown coordinates (u I. u2) and
(U'1o u'2) of the natural origins can also be obtained. The
image coordinates can then be appropriately transformed
into their natural systems. whence depth can be calculated
by the method prescribed by Longuet-Higgins:

X3 = [(R I - x' IR 3)·t]l[(R I - x' IR 3)·X]. (30)

XI =X IX 3• X 2 = X iJ( 3. (31)

and

Note that x , x ', X. X' are now in the natural image
coordinate system.

6. SUMMARY

Given 8 corresponding points in two images without
any registration information whatsoever. it is possible to
calculate the two epicentres and the relation governing the
pairs of epipolar lines. The rest of the matching problem
reduces to one dimensional searches along the epipolar
lines and can be automated using any stereo matching
algorithm.

Although it would appear that structure cannot be
inferred from the image data alone in the absence
of any registration information whatever. full
registration information is also not necessary. For
example. given either (a) the direction of displacement
(two direction cosines) of one camera with respect to the
optic axis of the other. or. (b) the orientation of the
optic axis (two angles) of one camera with respect to
that of the other. methods were described to obtain

structure.
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