
[8] A Pipelined Architecture for the Canny Edge Detector

Brendan P D Ruff

GEC Research Limited
Hirst Research Centre, Wembley, HA9 7PP, UK

Abstract

Low level vision algorithms deal with information at the
pixel level. Their output is more abstract, meaningful,
and compact, as it deals with the structure underlying
the scene. General purpose processors are well suited to
dealing with abstractions that require flexible process­
ing, more so than they are to the simple and repetitive
pixel processing task, a task that does not make use of
control flow sophistication. Because of this dichotomy
in processing style, a fixed low level front-end proces­
sor suggests itself as a dedicated real-time data" abstrac­
tor" , presenting as its output data relevant, in this case,
to edge based stereo processing. The stereo system will
deal with the abstracted data at the same scene rate but
slower data rate on a general purpose, and possibly par­
allel, processor. The low-level edge detection algorithm
implemented, the Canny edge detector [1] , will be par­
titioned into a cascade of simpler operations in the data­
flow, or pipelined manner, to exploit the algorithm's
inherent structure.

1 Introduction

The Pipelined Canny system has been designed around
the requirements of the PMF stereo algorithm [2] to re­
move the load of low-level processing from TINA [3] ,
a stereo 3-D modelling system with capabilities for ob­
ject manipulation. The goal of any vision system is to
operate in step with its environment, reacting to stim­
uli with sufficiently small processing lag so that a sensi­
ble response may be made. Biological systems perform
this through massive, though slow, parallelism. Machines
are limited in parallelism through size, but operate with
many orders of magnitude greater speed . However, gen­
eral purpose processors have large control time overheads
in arranging data for processing and thus cannot achieve
the full processing potential of silicon technology. This
is not as serious a restraint in the symbolic processing
for scene understanding as it is in the early processing of
the massive amounts of pixel data thrown at the vision
system. A pre-processor is required with control informa­
tion designed implicitly into its architecture so removing
time penalties . This processor, the Canny edge detector
for the stereo vision system, extracts edge information
from the intensity map of the image, so reducing the data
volume from the square of the image luminosity array's

dimension to the order of that data volume divided by
sigma squared, where sigma is the standard deviation of
the Gaussian used in the blurring operation of Canny.

2 The Canny Edge Operator

The Canny edge operator is an optimal edge detector
addressing the twin goals of sensitivity and localisation.
The processing involves several sophisticated operations.
The pipelined Canny has an architecture that divides the
processing task into many small stages. These may be
grouped together into the following functional units as
suggested in the original thesis by J .Canny [1].

1. 2-D Gaussian convolution with the image luminosc­
ityarray

2. Gradient and orientation calculation

3. Non-Maximal gradient suppression based upon the
the gradient at a pixel and its two nearest neighbours
along the gradient direction.

4. Interpolation of the maximum gradient position to
sub-pixel accuracy based upon qaudratic or other
fitting.

5. Thresholding with hysteresis to grow back weak
edges but to allow greater noise immunity by set­
ting a high threshold.

Each unit itself will be further sub-divided until 'nu­
clear' units are defined for processing as will be demon­
strated in later sections.

These functional units are self contained, dealing with
input data from the previous unit and producing an out­
put. The final output of the system is a set of edges with
gradient strength, orientation, and a sub-pixel offset to
the edge in either the X or Y direction.

3 Pipelining philosophy

The pipeline approach to algorithm design is to represent
the algorithm in the data flow representation. However
all parts of the network are synchronous allowing one pe­
riod of the pipeline clock to perform the operation within
each part of the network. Thus an algorithm that is com­
posed as a cascade of operations is divided into simple



62

Ma)(l)u$
Connections

--+-
Orienlo\ion

( B btt)
SUb-ph-eel offset

(B btl)

Figure 1: Front-End Edge Detector System

operations, units, that may be performed within a single
beat of the pipeline clock. The units are then cascaded
so that each unit processes its input during the period
between clocks in order that it presents its output to the
next unit in the pipeline at the next clock period. It is
the ordering of the units that allows input data to be pro­
cessed in parts until emerging from the pipeline . It is then
clear that each stage of the pipeline is busy during every
beat of the clock, this being the strength of the pipeline
processor. The penalty for such a distributed cascaded
processor lies in the time latency between data entering
the processor and later emerging. However one piece of
processed data emmerges at every clock beat. For im­
age analysis systems the latency induced by a pipelined
processor is unlikely to affect performance as a latency of
even several frames corresponds to several million stages
in the pipeline but only a few milliseconds latency.

4 Pipelined Edge Detector

The edge detector is partitioned over several circuit
boards in a standardised environment for its development
and for interface to other processors for further analysis.
Data is acquired with a frame grabber and then output
in non-interlaced format over the Maxbus [4] video bus
to a chain of three pipelined modules and an additional
frame-store. Data is transmitted between modules on the
Maxbus as is the final output of the pipeline. Figure.1
shows this system. Note that each module is addition­
ally interfaced to the VM.E bus for control purposes. This
environment coincides with all of Datacube's image pro­
cessing modules and also with the MARVIN transputer
system being developed as the processing engine upon
which TIN A is to execute.

Figure 2: Pipeline of Modules within the Canny Edge
Detector

The edge detector is composed of a chain of several
modules. Figure.2. Each module is internally pipelined.
The modules perform the following functions:

1. The first convolver performs a 40-point Gaussian
convolution of the pixel stream.

2. The second transposes the output array of the con­
volver.

3. The third board performs a second 40-point convo­
lution with an 8-bit result .

4. The fourth board performs the non-maximal sup­
pression and hysteresis algorithm.

These modules define the functional parts of the Canny
edge detector whose output is a data set containing zeroes
for points not containing inflections, but for inflection
points three pieces of data are given designed to interface
with the TIN A system:

1. the edge ( gradient) orientation ( 8-bit orientation
code)

2. the edge strength ( 8-bit sign magnitude)

3. the sub-pixel offset ( 8-bit sign magnitude) within
the pixel to the edge position measured to an accu­
racy of 0.02 pixels for high contrast edges, degrading
to 0.5 pixels for unit contrast edges.

This offset is measured either in the image 'vertical' or
'horizontal' direction according to which is nearest to the
true gradient direction. Note that if the gradient is zero
the other pieces of data should be disregarded.

It then remains to describe the architecture of each
board.



63

VMIIl,m

Leosl stgnt11cant byte

Filler Module ArchlltClIlce

cete

~••MO$III.stgnlf1cenl byte

Figure 3: Convolver Architecture Figure 4: Non-Maximal Suppression and Hysteresis Mod­
ule

5 Architecture of the boards
within the edge detector

5.2 Non-maximal suppression (NMS)
and hysteresis module

5.1 Convolver architecture

Figure.3 shows the architecture of the convolver. The
convolver board receives an 8-bit data stream from the
Maxbus and performs a 40-point convolution of this data
with a 40-point programmable mask of 9-bit twos com­
plement coefficients. The result. is converted into sign
magnitude format then arithmetically shifted left or right
by up to 16 bits. This is programmable. The shifted re­
sult is divided by a 16 bit factor using a multiplicative
division technique . The result is then either converted
again to twos complement format or left as a magnitude
only result. The 16-bit result requires two M-axbus ports
for output. The shifting and dividing stage is fully pro­
grammable to allow format adjustment and normalisa­
tion.

Operations are synchronised to the data stream with
timing information supplied by the Maxbus timing port,
P3. Control of the board 's operation is effected via the
VME bus. Various programmable latches control the
functions of the board. The coefficient memory is fully
read/write accessible to the VME bus for mask defini­
tion . The board behaves both as a Maxbus slave and a
VME slaveas is required for stream processing under the
Maxbus philosophy.

Standard MSI TTL integrated circuits and PALs dom­
inate the design. VLSI parts are used in the convolu­
tion. The convolution is implemented with five single
chip multiplier-accumulator arrays each of which contain
eight multiplier-accumulators of 8-bit data and 9-bit co­
efficient precision producing a 26 bit result.

This module houses two cascaded pipelined processors,
figureA . The first performs the non-maximal gradient
suppression, outputting gradient strength, sub-pixel off­
sets, and edge orientation. The second performs the hys­
teresis edge thresholding algorithm. This produces, on
a 3 line array, two single bit maps of the upper thresh­
olded edges and lower thresholded, weak, edges . A third
map is produced which consists of the upper thresholded,
strong, map with any of the lower thresholded edges adja­
cent to the strong edges logically ORed onto it . This map
then becomes the strong edge map of the next iteration
of the algorithm. The weak edge map is unchanged. A
number of iterations of this pipelined algorithm reduces
edge noise considerably while incurring only a very low
hardware overhead.

5.3 Non-maximal suppression, NMS

Eight-bit magnitude data is input from the maxbus. A
gradient operator based upon a differencing convolution
with the mask (1,0 ,-1) in horizontal and vertical image
directions produces the partial derivatives of the already
blurred image. Orientation and pythagorean gradient are
then calculated via fast look up tables . Based upon the
gradient direction, the central gradient and its two near­
est neighbours are selected and passed to a processor that
calculates the sub-pixel offset to the maximum, if the cen­
tral gradient is indeed a maximum. This is performed in
a fast look-up table based upon the difference of th e cen­
tral and largest other gradient compared to the smaller ,
giving only a 14 bit look-up. Otherwise the gradient is



suppressed by asigning it a zero value. Gradient values
are passed as a 10MHz stream to the hysteresis processor
while orientation and sub-pixel offset data is input to de­
lay elements to synchronise their final emergence to the
maxbus with the output of the hysteresis.

5.4 Hysteresis

This algorithm initially builds up an upper and lower
thresholded edge gradient map by performing a thresh­
olding of the gradient with programmable upper and
lower thresholds. The pipelined logical processor in fig­
ureA generates as its output a single bit specifying an
edge or non-edge decision, suppressing noise edges. The
gradient is delayed to synchronise it with the emergence
of the decision from the processor. The gradient is then
suppressed or maintained in accordance with the outcome
of the decision.

6 Hardware design philosophy

Pipelined modules are simple encapsulated processors.
Each performs its function within the time period of the
pipeline clock. This naturally defines a highly modu­
lar design philosophy. Specification of interfaces between
each module and module function are sufficient to define
the module so that detailed design may be delegated to
allow highly parallel development. Design testability is
simplified as custom data may be inserted at any stage in
the pipeline to test the proceeding pipelined unit . Test
vectors of the output of the preceding unit must be gen­
erated.

7 Example of Pipelined circuitry

This example illustrates the pipelined technique for pro­
cessor design for a simple operation performed at a rate
of 10MHz.

Imagine that some second order polynomial for a group
of 4 adjacent pixels, in a square, is to be calculated. Fig­
ure.5 shows how this may be performed. A line buffer is
a set of N registers set head to tail to allow data to be
delayed by N clock cycles, where N is the length of a line.
The operation performed causes a latency of N cycles for
the line delay, 1 cycle for a registered buffering to allow
all four pixels to be accessed simultaneously. Squaring is
performed by look-up table, an operation that can take
as little as about 40ns ( nano-seconds ) up to 150ns or
more for slower memory devices. In general, a 15-bit look
up table will not be faster -than 70ns, but an 8-bit table
could be as fast as 20ns. The output of the square look-up
tables is registered to allow synchronisation to the pixel
clock so that the input to the next set of arithmetic units
is stable. A set of additions is performed in three tiers to
allow adequate processing time for each stage. It is pos­
sible that the square law look-up table and an addition
stage could have been cascaded in one registered section
(lOOns time slice) and that two or more of the additions
could have also been performed in one registered section.
The propagation delay of these devices compared to the

64

uete

Figure 5: An Example of Pipelining

pipeline clock period will determine the number and size
of operations to be performed as a cascade in one regis­
tered section of the pipeline.

8 Adapting to Industrial Appli­
cations

The pipelined or data flow architecture is highly suit­
able for design in custom VLSI circuits. The modu­
lar architecture and unidirectional flow of data in the
pipeline allow for a standard-cell design approach (de­
sign using libraries of modular logic circuits) with cells
linked by very regular and short interconnection. It is
envisaged that an extreme compression of circuit area
is possible through the custom approach. This will in
turn allow very small size for the processor, more suit­
able to autonomous guided vehicles. Identifiable areas
for size reduction through the custom silicon design ap­
proach within the Canny architecture are:

1. For smaller Gaussian convolutions a single chip solu­
tion is possible for an 8x8 array of multipliers with
line buffering on-chip. This reduces the Gaussian
convolution to the convolver and interface circuitry.

2. Non-maximal suppression for this architecture re­
quires extensive use of look-up tables, already near
their present limit in VLSI, but custom circuits
would allow integration of line buffers and registers,
multiplexers for the pixel and gradient selection net­
work, either on separate chips or on one of the look­
up table chips .

3. Hysteresis may be performed with a single chip
incorporating the line buffers, logic network, and



Figure 6: A Widget Scene

threshold selectors.

It is envisaged that the edge operator could be com­
pressed into about seven integrated circuits for the com­
putation, each around the 28 pin dual-in-line size. Addi ­
tional cicuitry is required for interfacing to the VME bus
and MAXBUS. The convolution, non-maximal suppres­
sion and hysteresis could then be performed on a single
circuit board to provide a compact front-end processor
for edge based stereo systems.

9 Simulations

The version of the Canny operator chosen for pipelined
implementation · uses integer arithmetic, restricted to
8-bits for the gradient and 8-bits for the final convolu­
tion output though the full resolution of the 9-bit co­
efficient and 8-bit pixel data is maintained until a final
format adjustment reduces it to 8-bits. This accuracy
is the minimum required sufficient to maintain to 0.02
pixel accuracy of high contrast edges using wide Gaus­
sian convolution. Precision less than this degrades this
performance. This precision is, however, quite convenient
for standard 8-bit data paths.

Some simulations results are presented in figures 6,7,8.
These show, respectively, a simulated widget scene gen­
erated by WINSOM [5] , a Canny edge map of the scene,
and an expanded corner junction of the edge map to illus­
trate sub-pixel acuity (the grid represents pixel bound­
aries) .

Theoretical edge positional accuracies are given below
for the edge detector measured upon a test image of a
circle of radius 60 pixels using a Gaussian of sigma 1.0,
where the contrast across the circle boundary is varied
between 2 to 200.

65

Figure 7: Canny Edge Detected Scene

.-. I I I - I ,
,

- --r-r-e- -r-I'--..

1\
I

/
/ II

/

V
I / I

Figure 8: An expansion of the circled corner in figure 7
The graduations represent pixel boundaries



Intensity
(0 .. 255)

2
20
200

Mean magnitude error
in edge position (pixels)

.48

.05

.02

66

[5] P Quarendon. Winsom user's guide, report number
uksc 123. Technical report, IBM Scientific Centre,
Winchester , Rants, 1984.

Figure 9: Edge Positional Error for the Pipelined Edge
Detector

10 Discussion

It has been shown how pipelining an algorithm can lead
to a fast hardware architecture. It is clear that some
algorithms are susceptible to the pipeline, or dataflow,
architecture, in particular many of the low level vision
algorithms, the algorithms typically used as the 'front
end' to an image analysis system. Further, the real-time
processing possible with this design philosophy allows the
abstraction of higher level data to reduce data rate. This
data is scene dependent, asynchronous to the input pixel
stream and of a much reduced volume compared to the
pixel data volume. It is hoped that the next layer on
the analysis ladder of an image processing system will
deal with this data in one, or several frame times, to
produce higher level, yet still real-time, abstractions. For
the PMF stereo algorithm implemented on a transputer
network this is possible. It is hoped that a VLSI version
of the system will allow a compac t standard front -end
processor for higher level vision engines.

References

[1] J F Canny. A computational approach to edge de­
tection . IEEE Trans Pattern Anaysis and Machine
Intelligence, PAMI-8(6) :679-698 , 1986.

[2] Stephen B Pollard, John E W Mayhew, and John P
Frisby. PMF - a stereo correspondence algorithm us­
ing a disparity gradient limit. Perception, 14(4):449­
470, 1985.

[3] J Porrill, S B Pollard, T P Pridmore, J B Bowen,
JEW Mayhew , and J P Frisby. Tina: The sheffield
vision system. Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1138­
1144, 1987.

[4] Datacube Inc . Maxbus specification manual. Techni­
cal report, 1985.


