
[10] A Multiprocessor 3D Vision System for Pick and Place

Michael Rygol, Stephen B Pollard and Chris R Brown

AI Vision Research Unit
University of Sheffield, Sheffield S10 2TN, UK

We describe a 3D VlSZon system implemented upon a
locally developed transputer-based hybrid parallel pro­
cessing engine named MARVIN (Multiprocessor ARchitec­
ture for VIsioN), hosted by a SUN workstation. In addition
to the recovery of scene descriptions from edge based
binocular stereo, the system incorporates a model match­
ing algorithm which is able to accurately locate modelled
objects within such scenes. The competence of this vision
system is demonstrated by visually guiding a robot arm to
pick up various objects in a cluttered scene with a total
processing time of approximately 10 seconds.

INTRODUCTION AND OVERVIEW

The computational complexity of machine VISIon algo­
rithms is such that their use in industrial environments is
often limited when executing on conventional sequential
computer architectures. It follows that much potential for
improvement exists through the application of parallel pro­
cessors. However, realising that potential is not entirely
straightforward as the type of parallelism is not uniform
throughout the processing cycle. At the lower levels, tasks
such as edge detection involve only local image operations
and offer much potential for spatial parallelism. At the
topmost level, model matching offers greatest potential for
model instance andfeatural parallelism.

The goals of the work described in this paper are twofold.
Firstly, to demonstrate that it is possible to develop a
large parallel 3D vision system (as opposed to the paral­
lelisation of a single image processing routine often
presented elsewhere). Secondly, to demonstrate the suita­
bility of our prototype general purpose vision engine,
MARVIN, for exploiting numerous forms of parallelism
within a single overall application.

MARVIN has been designed to provide a balance between
frame-rate hardware and a general purpose parallel com­
puting resource.

The system has been designed to be both general purpose
and easy to use.

SYSTEM ARCIllTECTURE

MARVIN's 25 processors (1'800 transputers) are firm­
wired as a regular, fully-connected mesh with 3 rows, 8
columns and an extension for the root transputer. The
machine architecture is further described in [1]. A scaled
down version is shown in figure 1. Two links from the
root transputer are connected to the host machine. Link 0
provides the usual boot path and I/O interface whereas

link 1 provides a dedicated communications path to tditool
(a multi-window tool, running in Sunview) allowing
multi-processor console I/O [2].

VME Busr;:==:::::.1

Figure 1. Marvin System Architecture

One of the rows consists of locally developed transputer
cards (named TMAX) provided with 4 frame-rate byte­
wide bidirectional video busses (the industry standard
MAXbus, by Datacube Inc) and circuitry to control the
operation of these busses, such as the ability to obtain a
region of interest from the video stream. These busses
may also be ganged to allow the transfer of wider data
streams up to 32 bits. All other processors are standard
1'800 + 2Mbyte TRAMs (Transputer Modules).

The TMAX cards are instrumental in providing a fast data
path through the system for (predominantly) image data,
minimising data transit times, a common problem with
message passing machines. It is our intention to exploit
further the MAXbus facility by adding compatible cards to
perform frame rate image processing operations (eg. con­
volution).

The stereo images (512 pixels square) are simultaneously
grabbed from a pair of ccd cameras via two Dataeube
Digirnax frarnegrabbers into Datacube framestores. The
framestores share a number of MAXbus ports with the
row of TMAX cards through which synchronised image
acquisition can be achieved by the TMAX cards (utilising

This research was supponed by SERC project grant no. GRJE 64497 awarded to J.P. Frisby and J.E.W. Mayhew under
the ACME programme in collaboration with GEC Hirst Research Centre. Wernbley



a shared interrupt signal).

Resident on each lMAX is a server providing network­
wide facilities. Any task on any processor may request
operations from these servers. Such operations · include
region-of-interest acquisition, data plotting and low level
control operations. Access to these operations is via a
library of function calls.

The entire system is programmed in Parallel C and runs
within a locally developed run-time environment [2]. The
model of parallelism adopted is based upon Communicat­
ing Sequential Processes (CSP) where the system
comprises a number of sequential processes executing
concurrently and communicating via channels [3]. Our
run-time environment allows all processes throughout the
system to communicate with each other via virtual chan­
nels, allowing. (addressed) messages to be exchanged
between processes that have no knowledge of the
hardware topology.

The root processor performs no vision processing but
holds the highest levels of the control architecture and
runs various servers to provide host facilities to the rest of
the network.

Workerprocessors provide various repertoires of resources
which are requested to do work by other processes in the
control architecture, employing a client-server model. The
development of this technique has greatly simplified the
addition of new competences to the system.

Vision processing is broken down into a number of tasks
each of which may itself be multi-threaded. (A "thread" is
a lightweight process that may share code and data with
other threads.) Numerous copies of the vision task bundles
are distributed across the network. Each of these tasks
receives a control message that contains all of the neces­
sary run-time parameters for that task. This technique
allows dynamic changes of operation in the system.

CONTROL ARCHITECTURE

System control is hierarchical and distributed. At any level
in the hierarchy, the system comprises a small and
manageable number of processes each with a well-defined
interface, allowing simplified interaction within the sys­
tem.

A simplified version of the control architecture is shown
in figure 2 where higher levels of the hierarchy are
towards the centre. The top levels of the control hierarchy
are resident upon the root transputer. A control thread is
created on the root processor for each sub-group of pro­
cessors performing the vision processing allowing asyn­
chronous control, if necessary. A central thread, the
highest level in the hierarchy, controls the operation of the
vision processes via these threads. Each vision process has
no built-in knowledge of where its data comes from or
where results are to be sent. The action of the machine is
completely fluid, all dataflow being determined by the
control architecture at run-time.

Each vision process communicates with its (superior) con­
trol thread upon completion with a small reply packet
The controller then uses this information to instruct the
task performing the next processing stage. In this way the

76

various tasks are kept independent from each other as
much as possible.

Host services

Figure 2 Control Architecture

Some of the tasks require asynchronous control operations.
In this case, control information is received by a separate
thread running within the task, allowing control informa­
tion to be asynchronously decoupled from data flow.

The MARVIN Software Infrastructure [2] allows us to
ignore the physical communication paths between tasks
and the physical interconnections between processors,
allowing any logical topology to be chosen and changed
dynamically.

Figure 2 highlights the principle of the distributed control
paradigm. It is easy to see that control of a parallel system
is made simple and "open" using this technique as
opposed to, say, a completely centralised or data driven
organisation. The user may then interface with the system
via the top level of control.

RECOVERY OF 3D SCENE GEOMETRY

This vision system is derived from the AIVRU TINA sys­
tem [4] which employs edge based stereo triangulation as
a basis for three dimensional description.

We employ spatial parallelism by dividing both left and
right images into 8 horizontal slices approximately 64 ras­
ters wide. A small overlap (2 rasters) between adjacent
slices is incorporated to avoid boundary effects and sim­
plify the processes of recombination that occur later.
There is a limit to how thin the image slices can be made
without adversely effecting the reliability of the stereo
matching process. However, potential does exist for
further subdivision of images in the horizontal direction
with a small increase in the complexity of the stereo
matching algorithm.

Each image slice pair is acquired simultaneously into an
allotted lMAX, controlled remotely by the control task on
the root processor . The pair of transputers vertically adja­
cent to the TMAX are used to process the left and right



PolyApprox

image slices in parallel. The size of the right image slice
is adjusted to take into account the warping effect of the
rectification of edge locations into a parallel camera
geometry. This is determined from a copy of the calibra­
tion data resident upon each processor (this may be
updated dynamically to allow for updated calibration esti­
mates to be incorporated).

Obtaining Edges

Edges are obtained to sub-pixel acuity from grey-level
images by a single scale high frequency application of the
Canny edge operator [5]. The high frequency operator
used here employs a gaussian mask of sigma 1.0. Convo­
lution is computationally expensive but fortunately the two
dimensional gaussian smoothing can be achieved through
two 1 dimensional convolutions (i.e, first along the rows
and then the columns). However, it is our preferred inten­
tion, in the longer term, to use specialised convolution
boards directly on the MAXBus video stream.

Each Canny process obtains the raw image slice from a
TMAX with a simple parameterised function call. The
Canny task processing the left image slice packs the resul­
tant edgemap into a data packet and sends it to a collec­
tion thread running within the right Canny task. Upon
completion, the right Canny task and the collection thread
rendezvous and send a reply to the control thread, on the
root processor. Following detection, edge strings are
formed by linking edge pixels (edgels) into chains of con­
nected components.

Stereo Matching

We use a locally developed algorithm, PMF [4], for stereo
matching. In PMF, matches between edges from the left
and right images are preferred if they mutually support
each other through a disparity gradient constraint and if
they satisfy a number of higher level grouping constraints,
most notably uniqueness, ordering (along epipolars) and
figural continuity.

The PMF task runs on the processor that now holds both
edgemaps (the one that held the right image slice). The
edge structures are organised so as to make both spatial
location and connectivity explicit. To avoid major data
transfer and recomputation the PMF control packet (sent
from the root) simply contains a pointer to the edge struc­
tures in the memory shared by the threads.

Geometrical Elements

As well as being matched, edge strings are processed to
recover descriptions of the two dimensional geometrical
elements they may represent. This process is currently
limited to straight line descriptions though in previous
implementations we have also recovered circular descrip­
tions, and are currently developing methods to identify
ellipses. The algorithm uses a recursive fit and segment
strategy. Segmentation points are included when the
underlying edge string deviates from the current line fit.

Robustness of the system (and its speed) relies upon the
fact that a heuristic search strategy is used to identify
those regions of strings/segmented sub-strings that are
most amenable to straight line fit. The actual fit is com-

77

puted by orthogonal regression.

Given descriptions of the two dimensional geometry (in a
single view) and the results of the application of the stereo
algorithm to the underlying edge strings, it is possible to
recover three dimensional geometrical descriptions.
Disparity values can be obtained along the 2D geometrical
descriptors for each matched edge point. A second stage
of 2D fitting (in arc length against disparity) computes the
fit in disparity space. Finally, disparity data is projected
into the world using transformations based upon the cam­
era calibration. The sequence of operations taking place
on each pair of processors is shown in figure 3.

Figure 3. Data flow for recovery ofscene
geometry for each image pair slice

At this point in the processing, the 3D geometry from the
current scene is spatially distributed across a number of
processors. This data needs to be integrated into one data
set as if it came from a single processor. A Joiner task
(figure 5) communicates with all of the 3D geometry
tasks, receiving both 2D and 3D information. These
descriptions are optimally combined where valid 2D con­
nectivity is identified between image slices. Upon comple­
tion, the Joiner returns the integrated geometry to the
main control task resident on the root processor. The con­
troller then forwards this information to a number (defined
at run-time) of model matcher tasks distributed throughout
the network.

Figure 4 shows an example of the 3D geometry recovered
from a scene, projected over a ground plane.

One important consideration in this parallel vision system
is that the computation of descriptions higher in the pro­
cessing chain is dependent upon large amounts of previ­
ously computed data. For example the 3D data structure is
dependent upon both 2D polygonal approximations and
the matched edges. Accordingly, the use of the traditional
processor farm is inappropriate as the amount of data flow
required would make it unusable.



78

decomposed into separate searches for feature sets from
the modelled object in the spirit of characteristic views
[10]. A characteristic view in this scenario is deemed to
consist of a set of geometrical features of the object that
are consistent with a range of closely related viewpoints
of the object. This, in effect, allows the distribution of the
search tree over a number of processors.

To realise this in a consistent manner, a virtual matcher is
used. The virtual matcher receives a control message
describing the name of the model to become its responsi­
bility and a list of processors available for use (allocated
at run-time, typically 6) which have a resident matching
task which will be instnicted to search the scene geometry
for a particular characteristic view of the object. The vir­
tual matcher obtains all relevant information about the
model (from files on the host machine) and the current
geometry (from the Joiner) and distributes this information
to its subordinates . The virtual matcher retains a precom­
puted grasp position, specifying a pick-up position in the
coordinate frame of the model description. Each subordi­
nate matcher attempts to locate a subset of the model
features.

Distributed geometry

Figure 5 Geometry joining and object location for
two objects (A & B) each with two subordinate matchers

Location ofobject ALocation of object B

Upon completion, the virtual matcher chooses the best
match obtained from all of its subordinates and feeds the
object location and grasp position (now transformed into
the world coordinate frame) up to the next higher level of
the control hierarchy. A virtual matcher is used for each
model to be located in the scene with the resources of the
entire network being shared between them.

This technique allows a search to be made for multiple
objects (with no extra time penalty) in a consistent, flexi­
ble and highly efficient manner (figure 5). Figure 6 shows
the reprojection of three matched models onto the original
image along with their grasp positions.

MODEL MATCHING

The model matcher is able to give accurately the position
and rotation of modelled objects (defined in terms of their
3D geometrical primitives) from the geometry recovered
by the earlier processing stages.

The adopted strategy [6] is to base initial matching
hypotheses on congruencies identified between 3D scene
descriptions and a chosen subset of features from the
model. Following hypotheses, potential matches are
ranked on the basis of the extent to which further support
exists for the three dimensional transformation they impli­
citly represent (between model and scene). The algorithm
exploits ideas from several sources: the use of a partial
pairwise geometrical relationships table to represent object
model and scene description from Grimson and Lozano­
Perez [7], the least squares computation of transformations
by exploiting the quatemion representation for rotations
from Faugeraus et al [8], and the use of focus features
from Bolles et al [9].

Whilst exhaustive search for maximal cliques of consistent
scene and model descriptions is avoided, the algorithm
still requires a considerable amount of searching to be per­
formed. Furthermore, the computational expense of the
algorithm (which increases roughly linearly with the scene
complexity) is replicated for each modelled object when
implemented on a sequential machine.

The most obvious way to exploit the architecture of
MARVIN in the model matching phase is to run multiple
instances of the model matcher on different processors,
thereby searching the same data for different models .
This limits the parallelism to the number of models being
searched for and is still too computationally time­
consuming. A further degree of parallelism is obtained by
employing a multi-level control architecture within the
matching process itself. The model matching process is

Figure 4. 3D Geometry with ground plane



Figure 6. Matched models

CONTROLLING THE ROBOT ARM

A UMI robot controlled by an IBM PC is used to perform
the pick and place. The IBM PC is in turn connected to a
SUN 3 workstation over a serial line. MARVIN may talk
to any SUN in our network by means of the UNIX socket
mechanism. Facilities provided by our run-time environ­
ment allow any task on any transputer to open and com­
municate with sockets to the outside world [2].

Each virtual model matcher returns a rotation and position
of the relevant object. This information is used to
transform a precomputed grasp position from the model
coordinate frame to the world coordinate frame.

This information is sent over a socket to a server control­
ling the robot (figure 5) on a remote machine according to
an agreed protocol, specifying the name of the model,
where to pick it up and what to do with it. MARVIN need
have no concern with solving the inverse kinematics, cam­
era to robot transformations and path planning in order to
pick the objects from the workspace, these issues are com­
puted in different areas of the computer network. An
example of the robot picking up a widget is shown in
figure 7.

Figure 7. Robot picking up a widget

79

The hand-eye calibration (the transformation between
camera space and robot space) is obtained by using TINA
to locate a flag held in the gripper of the robot arm. This
is repeated numerous times in various positions of the
robot workspace. A least-squares method is used to obtain
the best transformation.

CONCLUSIONS

A multiprocessor transputer-based vision system has been
described. We have employed two different techniques to
utilise the parallel hardware. The recovery of the scene
geometry employs spatial parallelism by decomposing the
image pairs into horizontal image slices. This is a natural
approach as depth data is obtained by matching elements
between left and right images. The requirement to transfer
image data quickly into the heart of the network is over­
come by means of the MAXbus and TMAX cards, making
the architecture of MARVIN well suited to exploiting spa­
tial parallelism.

The model matching process is parallelised on a featural
basis, using a hierarchical control strategy. Our run-time
environment provides a suitable framework for integrating
processing modules by allowing processors to provide
various resources to be utilised by any other requesting
processes.

Using MARVIN we have a system that in a former incar­
nation took well over one hour to to locate one object,
now runs in around 10 seconds, locating numerous
objects, making it far more practicable to perform interac­
tive "what-if' experiments and thus bringing this level of
visual competence ever closer to the industrial domain.

A more detailed breakdown of processing timings for a
typical scene is shown in table 1. The two vision
processes which have benefited most from being parallel­
ised are the Canny and model matching stages, the two
most costly tasks on a sequential machine.

Over the entire sequence of operations from grabbing the
image to obtaining four matched models we achieve an
average performance per processor of over 80%. This
figure relates the estimated time taken by one processor to
the time taken by 24 processors. •

Building a parallel vision system on a multi-processor
architecture has usefully demonstrated the applicability of
parallel techniques to machine vision. Designing the
machine around a set of general purpose processors such
as the transputer, rather than dedicated hardware has given
us a high performance machine whilst retaining flexibility.

All knowledge gained from experiences with MARVIN
will be highly relevant in the building of a next-generation
machine which will utilise the forthcoming HI transputer
and further frame-rate hardware enabling us to start to
approach real-time processing with a general purpose
machine.

Work is in hand to implement a parallel feature tracker on
MARVIN which will follow (at near real-time) features
identified as being those from a modelled object. This
beacon tracking is to provide some of the information
required to enable our in-house vehicle to navigate
through an unknown environment.



Vision Process Time (ms)
Canny 5500
PMF 1000

2D Geometry 100
3D Geometry 200

Geometry joining 100
Model Matching 1600

System Overheads 1000
Total -10000

Table 1. Processing times

REFERENCES

1. Brown C. and Rygol M. (1989), "Marvin : Multipro­
cessor Architecture for Vision", Proceedings of the 10th
Occam User Group Technical Meeting

2. Brown C. and Rygol M. (1990), "An Environment
for the Development of Large Applications in Parallel C",
Transputer Applications'90

3. Hoare C.A.R. (1985), Communicating Sequential
Processes, Prentice-Hall International .

4. Porrill J, Pollard S B, Pridmore T P, Bowen J,
Mayhew JEW, and Frisby J P (1987) "TINA: The
Sheffield AIVRU vision system", IICAl 9, Milan 1138­
1144.

5. Canny J (1986), "A computational approach to edge
detection", Trans. Parr. Anal. & Mach. Intell, 679-698,
PAMI-8.

6. Pollard S B, Porrill J , Mayhew JEW and Frisby J
P (1986) "Matching geometrical descriptions in three
space", Image and Vision Computing, Vol 2, No 5 (1987)
73-78.

7. Grimson W.E.L. and T. Lozano-Perez (1984),
"Model based recognition from sparse range or tactile
data", Int. J. Robotics Res. 3(3): 3-35.

8. Faugeras O.D. and M. Hebert (1985), "The represen­
tation, recognition and positioning of 3D shapes from
range data", Int. I. Robotics Res

9. Bolles R.C., P. Horaud and MJ. Hannah (1983),
"3DPO: A three dimensional part orientation system",
Proc. IICAl 8. Karlshrue, West Germany,116-120.

10. Freeman H. and Chakravarti I. (1980), "The Use
of Characteristic Views in the Recognition of Three­
Dimensional Objects", Pattern Recognition in Practice, pp
277-288, Gelsema and Kanal (Eds), North-Holland.

80


