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Abstract

Edge-based binocular correspondence produces a sparse
disparity map, available information being distributed
along space curves which project to matched image edges.
To become useful these contours must be parsed into
describable sections. We present a novel view of the
segmentation/description process and describe an effective
algorithm based on our model.

1. Introduction

The segmentation of arbitrary contours into meaningful
sections is a longstanding problem receiving much atten-
tion. The goal of the present work is a description of the
fragmented 3D contours to be found in edge-based binocu-
lar disparity data (figure 1). This representation provides a
stepping stone to the construction of a complete wire
frame model of the viewed scene.

Contour segmentation is typically seen as the identification
either of discontinuities’™ or of describable subsec-
tions®*° operations which are usually treated as dual. As
we are interested in providing primitive descriptions to
higher processes we tend toward the latter view, though
the algorithm reported here combines both approaches.
Local segmentation operators are used to hypothesise
discontinuities which are only retained if they delimit one
or more describable segments. A contour is considered
describable if the mean-squares residual associated with
the most likely approximating primitive falls below some
threshold. No attempt is made to accurately locate discon-
tinuities, nor is a complete description required. In our
view the primary goal of a bottom-up segmentation pro-
cess should be to locate only those data sets which may
be reliably described. This conservative approach provides
an alternative to algorithms that obtain a fuller description
at the cost of imposing interpretations which may not be
appropriate.

Present (2D) approximation systems typically assume that
a single primitive, usually a straight line, is sufficient to
describe viewed curves. Most are based on computation-
ally expensive split/merge algorithms guided by some
measure of the accuracy of the approximation and ter-
minating when an adequate description has been achieved
(c£). For real scenes it is not clear that a single primi-
tive will suffice. Furthermore, the generalisation of these
techniques to multiple primitives is non-trivial and may
involve optimisation theory (e.g. '?).

. Segmentation operators are more flexible; if descriptions
are derived after discontinuity detection a wider set of
primitives may be considered. It has, however, been
argued’® that reliable segmentation cannot be achieved
without reference to the local structure of the data. A
further problem is that a given discontinuity may not give
rise to a unique, identifiable data item. It is quite probable,

given the noise inherent in the disparity map, that the
exact location of a particular discontinuity will not be
covered by the data at all.

In the algorithm discussed below, simple segmentation
operators provide heuristic guidance to a contour descrip-
tion process. This reduces the number of approximations
attempted while allowing multiple primitives to be con-
sidered and relieving the segmentation operators of the
responsibility of accurate discontinuity localisation.

In the following we describe segmentation and description
techniques and present a recursive
segmentation/description algorithm based upon the above
considerations. Input to this algorithm are ordered strings
of disparity measurements obtained via the Canny edge
detector'4, PMF'S and CONNECT!S,

Figure 1. Typical input data obtained from a pair of IBM
Winsom images via PMF. The images (a), 256*256 pixels
with 256 grey levels presented for cross-eyed fusion, give
rise to edge assertions (b). The edge detector is a Canny
operator with G 1.0. Correspondence produces the sparse
disparity map (c). Disparities are coded dark to light with
increasing depth.



2. Segmentation

Two operators are employed, recording curvature (x) anq
its derivative (k) as functions of arc length. Both k and k
estimates are obtained by differentiation of a locally
approximating quadratic. Peaks in these measurements are
assumed to mark discontinuities in orientation and curva-
ture respectively, a supposition that is common in the
literature?>"7,

It has long been appreciated that the performance of a
given differential operator depends heavily upon the rela-
tive spatial extent, or scale, of the device and the features
to which it is applied'”. This observation has led to recent
explorations of Scale Space!®#. Although the construction
of a multiple scale representation is beyond the scope of
the current project, the algorithm presented here does use
smoothing to alleviate quantisation noise before computing
curvature properties. The technique applied is the
diffusion method of Porrill et. al.'’®. Only a small amount
of smoothing is necessary; diffusion roughly equivalent to
a gaussian of o 2.5 is usually sufficient. When
significantly larger ¢ are used peaks tend to migrate, mak-
ing even approximate localisation difficult. After smooth-
ing quadratics are fitted through triples of adjacent points.

Peaks (and troughs) in x and k are detected by threshold-
ing absolute values. When examining « it is important not
to tag the side lobes of zero-crossings associated with
peaks in curvature. For this reason supra-threshold ¥ esti-
mates are only marked if no significant peaks in k are
found within a given neighbourhood. Asada and Brady*
give the following expression for the arc length between
the side lobes of a zero crossing caused by an angular
discontinuity 6 between contour segments with curvatures
X1, Kz where o is the standard deviation of an initial gaus-
sian smoothing function:

dmmF%:- [[K‘I—Kz] 2+—4‘%2]%

For a pure corner in which
K=K1=Ky
this simplifies to
Apur=20

Assuming all angular discontinuities to be pure and the
peak to lie approximately mid-way between the side lobes,
we impose the condition that no significant curvature peak
may lie within ¢ units of arc length of a marked peak in
curvature difference. A curvature peak is considered
significant if its absolute value is greater than the thres-
hold that would be applied if such features were being
sought. The use of diffusion means that our o, the
diffusion scale, is only an approximation to the gaussian
parameter. It appears, however, to be a sufficiently close
approximation for current purposes.

Note that x and % are measured in world, as opposed to
disparity, coordinates. The transformation from disparity
to world scales the depth component with respect to the
other dimensions. Hence if curvature properties were
estimated in disparity space the depth component would
be compressed, playing a reduced role in segmentation.
Segmenting in real coordinates allows depth information
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to contribute fully to all measurements. The increased
error brought about by the disparity->world scaling does
not appear to affect the segmentation process unduly,
though the computation of mean squares residuals is
greatly complicated. As quantisation error in disparity is
isotropic in all three directions, the approximation tech-
niques described below are applied to disparity values?,

3. Description

In the current scheme, extrema in ¥ and k serve to suggest
likely areas of discontinuity; before any final decision can
be made a geometrical description of the surrounding con-
tour is required. An input string may be classified as a
straight line, circular arc, planar or undescribable space
curve. Mathematical details of the techniques involved are
presented elsewhere®, here we discuss the algorithm by
which they are applied.

Given a set of points, orthogonal regression®? supplies

mean-squares residuals and metrical descriptions of the
best fit plane, straight line and point. The residuals, related
by the expression respyin>resine>respian., are examined in
decreasing order of magnitude, the first to fall below
threshold” being taken as representative of the true
description. Should all the residuals be above threshold, a
default space curve tag is assigned. Short strings often
match each primitive with a high degree of accuracy, in
which case curves are assumed to be locally straight.

After regression, plane curves are passed to a three point
circle fitting routine. If the circle residual is below thres-
hold it is accepted, otherwise the plane descriptor becomes
the primary representation. Although the choice of points
may affect the residual, constraints imposed by CON-
NECT*¢ force input strings to be at least Lipschitz con-
tinuous®. It is therefore unlikely that any significant
discontinuities will be due to noise, making point selection
less critical. As a further safeguard points are chosen from
diffused data. This could introduce error if the data were
heavily diffused, though it seems unlikely given the lim-
ited smoothing used here. As the extension of regression
techniques to circle fitting is computationally expensive?,
the reduced cost of a three point fit easily outweighs its
potential disadvantages.

Difficulties arise when describing curves containing hor-
izontal segments. In such cases the binocular correspon-
dence problem is effectively insoluble and any disparity
values obtained must be considered unreliable. To avoid
erroneous data, residual components arising from horizon-
tal sections are computed in the image plane®. Geometri-
cal descriptions, however, are always computed in 3-D,
using non-horizontal data. Horizontal disparity elements
are detected by thresholding the orientation of matched
edge assertions. Although this method cannot solve the
problem in its entirety, it does represent a first attempt to
improve initial disparity measurements on the basis of
later processing. If an input string is entirely horizontal its

disparity values are used and the resulting segment(s)
labelled.

4. An Algorithm

The segmentation/description scheme presented here
admits many possible algorithms. We concern ourselves



with a single example, known as GDF (Geometrical
Descriptive Filter). Processing begins with a call to the
description algorithm, thereafter focusing attention on
strings not immediately represented by a single straight or
circular segment. Planar and undescribed space curves are
passed to a recursive segmentation algorithm which may
be summarised thus:-

(1) x estimates arising from non-horizontal data are
thresholded at 90% of their maximum value, supra-
threshold data being tagged as possible segmentation
points. Should the string be entirely horizontal all of
the data is used.

(2) Tags are removed from any points which fail the
side-lobe test

(3) If no ¥ tags remain or all substrings are below the
required length, extrema in k are sought. A thres-
hold is again set at 90% of the maximum (non-
horizontal) value and (non-horizontal) supra-
threshold points tagged.

(4) If all hypothesised substrings fall below the length
threshold horizontal data is removed by segmenting
at the ends of horizontal sections.

(5) If no acceptably long segments result the description
reverts to the previous plane or space curve
representation, otherwise long substrings are passed
to the descriptive processes. Any classified as space
or plane curves are further subdivided by recursive
application of the segmentation procedure.

GDF secks the longest acceptable primitives while seg-
menting at the largest x and/or x values. Peaks in k are
sought first. If all hypothesised segmentation points are
rejected x values are examined. Should x fail to provide
an acceptable segmentation horizontal data is removed by
placing segmentation points at the ends of horizontal sec-
tions. If this also fails the representation reverts to the pre-
vious space or planar curve description. Note that the
length threshold measures the number of data points avail-
able, rather than the absolute length of the curve: reliable
classification of short strings is problematic. Hypothesised
segments of above threshold length are then passed to the
description algorithm. After classification, any remaining
plane or space curves are recursively segmented. In this
way strings are subdivided until either a satisfactory
representation is obtained or the segments remaining fall
below a length threshold. On termination, a GDB
(Geometrical Descriptive Base) format® file is produced.

In peak detection the choice of threshold is critical, being
subject to a trade-off. If thresholds are set too high,
extrema will be missed and the data only partially seg-
mented, typically leading to extra plane and/or space
curve descriptions. Underestimating may, on the other
hand, lead to oversegmentation, breaking long strings into
arbitrarily small segments. Both effects reduce the infor-
mation content of the final representation, though the
former is more serious. Later processes should be able to
recover from fragmented data, though the computational
cost incurred may be considerable. GDF sets thresholds
dynamically at 90% of the maximum absolute value of the
appropriate operator. An alternative strategy®!! would be
to segment at the maximum. This, however, would restrict
the system to marking a single discontinuity on each
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recursion. Under the current scheme it is common for
several peaks to be marked, speeding segmentation and
reducing the number of approximations required. As thres-
holds are set just below maximum the danger of marking
noise is small. On successive recursions operator maxima,
and therefore the thresholds applied, become smaller. GDF
is, therefore, (trivially) guaranteed to terminate.

Note that a simple threshold is applied; no suppression of
non-maximal estimates is assumed. As a result, most
peaks/troughs generate a pair of segmentation points, one
either side of the local extremum. An interesting feature
of this technique is the way in which the distance between
segmentation point and local extremum increases with the
spatial extent of the discontinuity. Hence GDF tends to
locate fine scale discontinuities with a greater degree of
accuracy. This has the secondary effect that strings having
rapidly changing properties are rarely passed to the
descriptive processes.
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Figure 2. Recursive segmentation/description. b) data aris-
ing from the line highlighted in a). ¢) x and % values
before diffusion. d) smoothed x, ¥ plots (¢ = 2.5). Seg-
mentation points are marked by vertical lines tagged with
recursion depths.



The approximation algorithm, where possible, extrapolates
descriptions of non-horizontal edges into unreliable, hor-
izontal data. If this is to be effective, horizontal strings
must only contribute segmentation points as a last resort;
the descriptive processes should first be given every
chance to correct erroneous data. Threshold selection and
application is, therefore, normally limited to non-
horizontal depth estimates. Some strings are, however,
entirely horizontal, in which case unreliable measurements
must be used. Horizontal data introduces problems the
techniques employed here can only begin to solve. The
removal of horizontal segments when both differential
operators fail to produce an acceptable segmentation is an
explicit recognition of this limitation.

Figure 2 illustrates the application of GDF to the data of
figure 1. The plots shown in fig. 2b display 3D position
estimates, y and z coordinates as functions of x, arising
from the line highlighted in figure 2a. Raw ¥ and ¥
values, obtained before diffusion and plotted as functions
of arc length, are presented in figure 2c. Diffusion (0=2.5)
produces the smoothed plots shown in figure 2d. Note that
three clearly distinguishable peaks have emerged. Dashed
vertical lines represent segmentation points found by GDF,
each tagged with an integer specifying the depth of recur-
sion at which the discontinuity was identified. Threshold
values, and the strings to which they were applied, are
marked by horizontal dotted lines. The final representation
in this case comprised three straight segments.

Figure 3: IBM Winsom generated test data. a) stereo
images of a unit icosahedron viewed at 6 interocular dis-
tances. b) GDB representation. Circles are represented by
broad lines, straight segments by fine.
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Although the differential operators are said to hypothesise
segmentation points, no hypotheses are ever fully rejected.
All intermediate representations are recorded, building for
each string a tree comprising non-terminal planar and/or
space curve nodes and leaves representing straight or cir-
cular arcs. Note, however, that no attempt is made to pro-
duce a fuller description by combining segments. As
Blake and Mayhew?S point out, unrestricted computation
of geometrical information is expensive and may lead to
representations that are redundant given the task at hand.
Even so, it is still sensible to exploit information obtained
as a side effect of the normal description procedure.

5. Examples and Evaluation

The most important evaluation criterion for any 3D vision
system is the extent to which it allows subsequent tasks to
be performed. In the present case this clearly depends
upon the geometrical accuracy of the contour descriptions
supplied. As prior processing stages exert considerable
influence on the final representation, any examination of
GDF output incorporates some evaluation of the lower
level components of the system.

Figures 3 and 4 show test data used to examine the accu-
racy of the GDB representation. To avoid camera calibra-
tion error, IBM Winsom generated images were employed.
In these and all subsequent examples a Canny edge
operator (0 = 1.0), PMF® , CONNECT'® and GDF
(diffusion scale 2.5) were applied to the original 256*256
pixel, 256 grey level images. Figure 3 shows the images
and GDB description arising from a unit icosahedron
viewed at 6 interocular distances (approximately human
reading distance). In figure 4 the icosahedron is intersected
with a sphere, generating circular faces of known size,
position and orientation.

Comparison of line equations derived from the Winsom
model with straight line descriptors contained in GDF out-
put shows a mean absolute error of 0.58 degrees in the
internal angles of the icosahedron. The mean absolute
error in line orientation is 0.24 degrees. Note that PMF
was unable to match the horizontal edge at the bottom of
the figure, this is an extreme example. Correspondence is
usually achieved, though the resulting disparity data is
always unreliable. Positional error was estimated by
measuring the perpendicular distance from the mid-point
of the GDB description to the true line, the mean error
being 6.24 pixels. Winsom measures distances in image
units, although no conversion to external units is possible,
this is clearly a small error.

A similar examination of circle descriptions (figure 4b)
shows a mean absolute error in circle radii and centre
position of 0.71 and 1.20 pixels respectively. Each circle
is associated with a plane descriptor. The mean absolute
error in the internal angles of these planes is 2.05 degrees,
while the mean absolute error in plane orientation is 2.49
degrees. Most circles give rise to some horizontal edges.
Horizontal sections in the data of figure 4 are marked in
figure 5a. Figure S5c shows the position estimates attributed
to the arc highlighted in figure 5b. Note the flattened
depth plot in the horizontal region, despite this distortion
the circle description is recovered satisfactorily. In this
case the error in plane orientation is 1.72 degrees, the cir-
cle radius and centre having errors of 1.38 and 2.01 pixels



respectively. It will be noted that full circles apparent in
the original images (figure 4a) are represented in GDF
output by pairs of semi-circles. This is a result of missing
data in the edge detection phase. Although image noise is
limited by the use of Winsom, such problems may still
occur.

It is clear from the above that useful 3D descriptions can
be derived, via GDF, from edge based disparity data. An
important question, however, concerns the stability of the
GDB representation over changes in viewpoint. Although
noise in edge detection and the number and position of
horizontal edges are obviously view-dependent, some
measure of stability is to be expected. Figure 6 shows
natural image pairs and GDB representations of two views
(separated by a rotation of approximately 180 degrees) of
a wire, seen from approximately four interocular distances.
Under this geometry 250 pixels is approximately equal to
1 cm. Note that the location of segmentation points and
the geometry of the final representation are similar. The
most noticeable error arises in the radii of the small circu-
lar arcs close to the free end of the wire. A considerable
amount of data is required if circles are to be recovered
accurately, examination of the longer arc parallel to the
short segment of figure 6d shows a reduced error. As a
further test, GDF output has been successfully exploited in
the model matching work of Pollard et. al”’. A more
detailed experimental evaluation of GDF may be found in
Pridmore®,

6. Conclusion

GDF has been implemented and appears both effective
and robust. Several features should be stressed:

Segmentation operators provide heuristic con-
trol to contour description processes.

Descriptions obtained from non-horizontal
data are, where possible, extrapolated into
horizontal regions.

No attempt is made to label the exact posi-
tions of discontinuities. Rather we report the
end points and geometrical properties of the
largest acceptable approximating segments.

GDF makes no strong assumptions about
viewed curves, preferring instead to capture
only those sections which may be closely
approximated by a set of simple primitives.

The construction of a complete wire frame from GDF out-
put is currently being investigated.

7. Discussion Note

The use of thresholding is often justifiably criticised in the
image processing literature on the grounds that it reduces
generality: thresholds for edge detection for example often
need to be tuned to particular world domains and/or imag-
ing conditions.
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Figure 4: IBM Winsom generated test data. a) stereo
images of a unit icosahedron intersected with a sphere. b)
GDB representation. Circles are represented by broad
lines, straight segments by fine.
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Figure 5. The effect of horizontal edges. a) disparity map
obtained via PMF from the object of figure 4. Horizontal
segments are drawn in black, other data in white. Position
plots, y and z as functions of x, associated with the circu-
lar arc marked in black in (b) are presented in (c). Note
the distorted z values arising from horizontal data.



This criticism is not applicable to our use of thresholds
during curve fitting because those thresholds are to do
with how any given set of edge locations can best be
described geometrically. This is a different issue from how
those edge tokens are obtained in the first place. Different
edge operators will of course yield different edge tokens,
and hence they would lead our system to produce different
geometric descriptions. But that is not in itself a valid cri-
ticism of the use of thresholds within the processes we
propose for obtaining geometric descriptions. We think it
may be necessary to emphasise this point in view of the
comments made by a referee. The residual values we
threshold during orthogonal regression can be interpreted
as measuring the standard deviation of error in edge loca-
tion given a particular geometric fit (if errors in edge loca-
tions are assumed to be distributed normally which seems
reasonable). Hence our use of thresholding is approxi-
mately equivalent to applying a 2 test of goodness of fit.
The current threshold of 0.5 pixels amounts to the require-
ment that any accepted geometric description is unlikely
to deviate from the data at any point by more that about
one pixel.
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