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Abstract

The statistical combination of information from multiple
sources is considered. The particular needs of the target
application, stereo vision, require that the formulation be
adequate to deal with highly correlated errors and con
straints, and that it deal naturally with geometrical data.

1. Introduction

Stereo viewing of an object supplies partial information
that can have unacceptably large errors in depth. To build
up a more accurate and complete model of the object we
would like to view it from many positions and match and
combine these views. In a preliminary experiment using
artificially generated stereo images the views were
matched', transformed into the same frame, and combined
by a weighted least squares method. Since the data was
artificial we had access to the true camera motion when
performing the transformation, and the merging behaved
correctly. However when the estimate of camera motion
supplied by the matcher was used, the resulting model,
rather than gradually firming up, gently disintegrated; the
errors in the model were correlated with the error in
estimated camera motion and accumulated rather than can
celled. In attempting to overcome this we found that it
could fruitfully be regarded as a multiple sensor problem
(one stereo sensor for each view) the object being to com
bine these sources of information when their relative cali
bration is imperfectly known. Although our main interest
is stereo vision we shall try to discuss this problem in full
generality, using stereo vision only as an illustration.

The combination of information from multiple sensors
including vision-like sensors is of immediate practical
importance in robotics where one can find many examples
of ad hoc combination rules. For example the Intelligent
Mobile Platform described by Crowley' combines maps of
its surroundings obtained from an ultrasonic range sensor
into a 'composite local model' by averaging.

Recent treatments have attempted to find a solution which
is optimal in some sense. For example the refinement of
stereo data by a stationary Kalman filter has been
described by Faugeras et a1.3, and Durrant-Whyte" has
considered the problem of statistical combination of sen
sors, each of which has its own reference frame, while
retaining geometrical consistency between frames. The
treatment given here draws largely from these two
sources.

2. Statistical Combination

What are the benefits of statistical combination of infor
mation? Firstly there is a reduction in error proportional
to the square root of the number of similar observations.

This is welcome and in many applications is the whole
aim of data combination, but in stereo vision, where we
might have a typical error in an observed angle of five
degrees say, the one hundred observations needed to
reduce the error to a respectable half a degree are not
likely to be available.

Even though stereo can be very inaccurate the errors are
highly anisotropic: lateral errors are much smaller than
depth errors. If two stereo views from different known
positions are available we can largely eliminate this aniso
tropy and give much better localisation in depth. This
illustrates a general point that the combination of informa
tion from sensors with complementary anisotropies can be
very beneficial. We can represent the error of each sensor
by a confidence ellipsoid and we require statistical combi
nation laws to perform the book-keeping task of 'intersect
ing' these ellipsoids. One common way of simplifying the
mathematics of statistical combination is to majorise the
error covariance matrices by diagonal matrices since they
are much easier to handle. This replaces error ellipsoids
by their smallest enveloping spheres. Since we believe
that error anisotropy can be on our side, we cannot make
use of this method.

Another source of increased accuracy can be the imposi
tion of constraints. For example if we see that three lines
almost intersect we may hypothesise the existence of a
trihedral vertex. A statistical model allows us to test this
hypothesis and if it is accepted to optimally adjust the
data to satisfy the constraint and accurately specify the
vertex. The data could thus be adjusted to achieve con
sistency with a symbolic (region, edge, vertex graph)
description of the data.

3. Gauss-Markov Estimation Theory

The simplest and best-developed theory of statistical com
bination of measurements deals with minimum variance
estimators for linear measurement equations , these are
maximum likelihood estimators when the noise is Gaus
sian. Though the robustness of such methods is open to
question (we will discuss this later) they are mathemati
cally very attractive. If we try to impose linear con
straints (which are essentially exact measurements) the
error covariance matrix becomes singular, and the classi
cal Gauss-Markov theorem fails though a generalisation is
available to deal with this case. Since this gives an essen
tially complete theoretical basis for the treatment of linear
measurements, we will summarise the results here, based
on an elegant treatment of the theory as an application of
the Moore-Penrose pseudo-inverse by Albert' , Morrison''
also deals with the subject of linear models and gives
more statistical background.



4. Linear Measurement Equations and Linear Con
straints

The state to be estimated is a vector x E RM
, the measure

ment and noise are vectors z, u ERn, and the measure
ment equation is assumed to be linear

z=Hx+ u

where the 'plant matrix' H is nxm. The noise u is taken to
be Gaussian with zero mean and covariance matrix R.
This formulation is more general than it looks since if we
also have a prior estimate Xo with prior covariance So and
x is subject to linear constraints Cx = c we can form a
composite equation of exactly the same form

• = [:'] = ~] x + [!] = tt« +u

where the covariance of the composite measurement error
n is

[

R 0 0]
Covlu] =R = 0 So 0
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From now on we assume we are dealing with this general
situation and drop the tildes. It is easy to see that the
matrix R will be singular when constraints (essentially
exact measurements) are present. Since R is symmetric
and positive and it has a unique positive symmetric square
root

To manipulate such singular matrices we will need a gen
eralisation of the concept of the inverse Ar1 of a matrix M
to general matrices. This is given by the Moore-Penrose
pseudo-inverse

W = lim (MIM + 021r1 MI
5-+0

for details of its properties and many uses see Albert'. A
discussion of the role of other generalised inverses in esti
mation theory can be found in Mitra6•

We include the possibility that the measurement z may
not be sufficient (even when exact) to determine the state
x completely. When this is so there are still linear func
tionals of x which can be estimated from the given meas
urements, the estimable linear functionals.

5. Definition

The functional y = Lx is said to be estimable if it has an
unbiased linear estimate y=Mz (that is an estimate such
that E[y] =y) for some matrix M.

Theorem

The y above is estimable if and only if

LltH=L

that is, if and only if

Range(LI) ~ Range(H~

More simply, the rows of L must be linear combinations
of the rows of H.

In particular taking L = I, x itself is estimable only if H
has full row-rank.

The generalised Gauss-Markov theorem now gives us the
best estimate of estimable y's.

Theorem

Let if= V(l - Hit) and G = F(l - (V'v)~ and let
x= Gz then
a) E[xj = FHx (this is the 'estimable part' of x) .
b) If y as above is estimable, then its best linear unbiased
estimator is y= Lx
c) If the error covariance R = V2 is non-singular

x= (HI R -lHt HI R-1z

This last can be recognised as the usual formula for the
weighted least squares estimate of x with a pseudo
inversion replacing the inversion.

Suppose we now wish to find the estimate of y given that
x satisfies a further set of constraints Cx = c. We could
extend the measurement equation further so as to include
these constraints as extra measurements but we can also
write down extensions to the results above which solve
this problem directly.

Theorem

Let M = H (1 - C+C). Then y is estimable given the addi
tional constraints if and only ifL~M = L that is, if and
only if Range(L~ c Range(MI)

All y's which were estimable without the constraints are
still estimable, and some more may become estimable (for
example Cx is obviously estimable as c whatever its status
before).

Theorem

Let M be as above and let

if=V(l-M~

G = (1 - C+C) F (1 - (?v)~

and

x= C'c + G(z - Hc+c)

then

a) E[x] = C*C + WMx

b) If Y is estimable its best linear unbiased estimator is
given by y = Lx.

If we want to test the hypothesis that the constraint holds
given the previous measurement z we first calculate the
estimators x and Xc for x before and after imposing the
constraint. Each estimate tries to minimise the weighted
sum square error, but the second minimisation is con
strained , so its residual will be larger. The increase in resi
dual

Be = (z - HxcY R+ (z - Hxd - (z - HxY R+ (z - Hx)

measures the distortion of the data required to impose the
constraint. A maximum likelihood test of the constraint
can ' be performed by testing Be as a central X2 variable
with Rank(HW - M~) degrees of freedom (this is the
number of independent constraints imposed). In general
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we will not be testing alternative hypotheses against
another, if we were we would need to discuss the power
of this test, details can be found in Morrison",

in eitherof these cases the new estimate is given as

i' = x+ k (z - h',,)

In this formulation the equations form a stationary Kalman
filter for sequential scalar measurements. As an alterna
tive to storing and updating the matrix A if one knows
that certain components of x have not been measured one
can assign them very large variances initially.

A problem with the recursive application of this update
rule is that a sequence of successive measurement must be
mutually independent, this is a major restriction. One
case in which this is not a problem is when we need to
impose a sequence of constraints, since constraints can
always be treated as independent if they are not redundant

6. Recursive Least Squares

The theory as described above covers all our needs, but is
very unwieldy computationally and conceptually. A great
simplification is achieved by considering the recursive
computation of estimators and residuals when single scalar
measurements and constraints are added sequentially. Of
course this has practical application since data acquisition
is often serial in nature.

Suppose we have already performed some measurements
and let A be the matrix which projects vectors perpendicu
lar to the estimable subspace of the state space R" (so if y
is estimable then Ay = 0) if we have performed measure
ments sufficient in principle to determine x then A = O.
Let i be our present estimate of the estimable part of x
and let the covariance of this estimate be S. Let the resi
dual so far be E.

Now suppose we make a single scalar measurement

z = h'x + u var[u] = cJ1-

with measurementnoise uncorrelated with the noise in our
previous measurements. Then we can give update rules for
A, S, i , and E. There are two cases: firstly if the new
measurement direction h has already been sampled i.e. if
Ah =0 then:

A'=A

(Sh)'(Sh)
S'=S-~:...-.;.<....>::.,;.~

(SZ + h' S h

k= Sh
cr+h/Sh

(z - h' X)2
E'=E+ - ~

0'2+ h'S h

if the measurement is in a new direction

A' =A _ (Ah)(Ah)'
h'Ah

S' = S_ (Sh)(Ah)' + (Ah)(Sh)' +
h'Ah

k=~
h'A h

E' = E

2 ,~

0' + h Sh (Ah)(Ah)'
(htAhi

or inconsistent. The imposition of a single scalar con
straint (that is a measurement with 0' =0) when we have
sufficient previous measurements that x itself is estimable
(so A = 0) is remarkably simple, the update rule is

S' = S _ (Sh) ~Sh)'
h'S h

k= S~
h'S h

,,' = i + k (z - h' x)

(z - h' X)2
E'=E+ ~

h'S h

The maximum likelihood test of the constraint treats
E' - E as X2 on one degree of freedom for Gaussian errors.

7. Measurement Primitives

To allow a measurement process to return only vectors in
R" is conceptually limiting. Often the type of process we
want to consider is more naturally regarded as measuring
and returning a more complex geometrical primitive. For
example a simple touch sensor might 'measure' a plane by
returning a point on it; an inaccurately calibrated stereo
rig might attempt to measure the projective transformation
between its own visual world and the real world. Of
course such primitives, however complex, can always be
encoded into vectors in R", the point is that this should be
done in a way that reflects their natural geometric struc
ture.
Suppose we are dealing with a class of geometric primi
tives forming a smooth manifold M (most of the entities
we are interested in satisfy this condition: points, lines,
planes, circles, rotations, projective transformations ... ).
An error prone measurement of such a primitive can be
thought of as sampling from a random process on M. How
are the statistics of such processes to be specified? If we
choose local coordinates 'sensibly' in a neighbourhood U
of some point of M, that is, a chart

cjl :U~R"

assigning coordinates cjl(1t) =x = (Xl, x2, ... , x")' to
points 1t of M we can say that a process is 'approximately
normal' with mean a given primitive 11 E M if the proba
bility distribution of x has the approximate form

(x- m)' R+ (x-m)
p(x) ee exp( )

2

where m = cjl(Il), and the probability density function is
non-negligible only inside U. Under changes of coordi
nates that are approximately affine over the support of the
probability distribution (using the summation convention)

i ' = i~ + AJ Y! + . . .

(A is the Jacobian matrix of the transformation) the mean
transforms like a vector and the covariance matrix
Rij = E[ixi] like a second rank tensor

mi' = mi + x~ Ri'i' = Ai A{ RJ:l

To discuss what is meant by a 'sensible' choice of coordi
nates would lead into very deep waters indeed. Stated
simply, the coordinates chosen should not be too distorted
with respect to the underlying symmetries of the manifold
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(all the manifolds in which we are interested have such
symmetries) at the scale of description required. For
example, if we are describing a point on the unit sphere
polar coordinates are fine near the equator, and singular at
the poles. We can describe a probability distribution with
peak near to a pole adequately in terms of these coordi
nates only if it has very small variance.

A problem with local coordinates is that they are often
inconvenient for the description of geometrical relation
ships. For example the condition that two unit vectors be
perpendicular is not a pretty sight when written out in
polar coordinates. However we often have an alternative
global description (in this case as a vector n with n-n = 1)
in which such relationships are easily expressed. The
problem with such descriptions is that they tend to involve
non-linear constraints (the condition n-n= I above, for
example). This second description (which we will call the
global description) will in general be an an embedding of
M in a higher dimensional space RN

•

t : M ~ RN: 1t ~ ~ = (1;1,1;2,..., 1;Ny

(e.g. for the two dimensional manifold of unit vectors it is
the natural embedding as the sphere in R3) . We want to
choose local coordinates in such a way that transformation
between the local and global descriptions is simple, In
general this will require that we deal with affine approxi
mations to the transformation, but we this is no great loss,
since our statistics can only deal with affine transforma
tions. These will take the form

1; = ~o + F% X X =f~ (S - ~o)

where F% and A are Nxn and nxN matrices respectively,
and ~o represents the origin of the local coordinate system.
The local coordinates should be attached to the primitive
rigidly, in the sense that a rigid motion in space preserves
the form of the matrices F% andf~. The systematic use of
these representationscan simplify and mechanise the prob
lem of deriving measurement equations and constraints.

8. Sensors and Constraints

For our purposes a sensor observes a measurement primi
tive 1;, its internal state (motion since last view, miscali
bration, etc.) is described by another primitive 0', and it
returns a third primitive eas measurement. If the meas
urement were exact the relationship between the three
would typically have the form

h(e, 0', S) =0

Choose local coordinates about the actual measurement e.
On the assumption of small approximately normal errors
we know that the true measurement eis related to the
actual measurement Co by

e= 1;0 + F. z z =N(O, R)

If we have estimates 0'0 and So of the other two quantities
and introduce local coordinates about these estimates we
can linearise the equation (with obvious choice of nota
tion) as

[
Oh oh ]rs1 oh -_z = -h(1;o. 0'0. So) = 00' ·F. , oS 'F% W+ ae ·F. z = HX+ u

This is a linear measurement equation for the perturba-

tions x, s where the measurement error has covariance

- _ ah I oh I

R =cov[u] = oe F,R F. ae
This equation can now be treated by Gauss-Markov
theory. However if we wish to perform each component
Zj of the measurement sequ~ntially they must be indepen
dent, that is. the matrix R must be diagonal. This is
unlikely to be the case. As stated previously we do not
wish to majorise R by a diagonal matrix, since this loses
information. One solution is to find the eigenvectors ej of
Rand apply the the scalar measurements

el z= el HX + el ii

sequentially since these are independent.

A second approach is to extend our state space to include
the measurement z and to regard the equation above as a
set of constraints on the augmented state vector. If we
ensure that the set of constraints is not redundant then
they can be applied sequentially.

In order to justify the above linearisations we must be
able to obtain good initial estimates of the state and cali
bration. In particular the total sensor information avail
able must be sufficient in the absence of error to deter
mine all the unknowns which have non-linear descriptions
or measurement equations; the purpose of the statistical
method is to optimise this estimate.

9. Sensor Combination

The above analysis allows us to outline a framework for
sensor combination that is conceptually very attractive.
We have a world containing a list of primitives with
estimated positions (s\> ~2•• •• ) and a set of independent
sensors whose calibrations with respect to the world frame
are estimated as (0'10 0'2, ... ). The world frame can be
chosen for convenience, as the frame of our most impor
tant sensor for example. The state vector is the list
(S1o Sz• • ••• X10 X2• •. . ) of corrections which must be
made to the calibrations and world primitives. Each of
these corrections is referred to an intrinsic frame attached
to the primitive. initially each will be zero.

If a measurement of the form of the last section is made.
the error in the measurement is adjoined to the state space
and the covariance matrix of the measurement adjoined to
the state covariance. The measurement equation is then
applied as a series of constraints. If the measurement itself
is a primitive of interest it can be kept in the state vector,
otherwise it is dropped. At any stage we can apply the
corrections specified in the state vector to the primitives,
this does not require any change in the state covariance.
since such changes would be second order small quanti
ties. If we want to change our world frame, we need only
change our global representations of the primitives, the
corrections and the state covariance being attached to the
intrinsic frame of the primitives.

We will now describe the above process in some detail in
a case study of the multiple stereoview problem.

10. The Stereo Sensor

Our immediate application of the above analysis is to
stereo data. This is provided by a 'sensor' which is a



i,j= 1,2

13. Geometrical Constraints

We would like a module embodying the theory above to
be available to a geometrical reasoning system as a
knowledge source aiding in the interpretation of a single
stereo view. As the geometrical reasoning system
hypotheses geometrical relationships (orthogonality, coin
cidence of lines etc.) the module is able to assign likeli
hoods to these hypotheses, and if they are accepted, to
correct the data to be consistent with the current under-

Po-(axvo) + PI Vl·(axvO) + P2 vz·(axvo) + VI PO·(axvl)

If we assume no prior knowledge, then by walking down
the string of points imposing this constraint in each image,
we can simultaneously correct our initial line and build up
its covariance matrix.

where

r p - Po J rJ OJ rp - Pol
l<v - vo)LTvol = [o J lv - voJdisp

Using the transformation above the error covariance of the
description in the world is thus

S = [l; 1~ ]o --1:
lZLJvol2

if Po is taken as the projection of the disparity space cen
troid into the world.

The above idealisation is very unrealistic for two main
reasons. Firstly 'the stereo matching of continuous lines
mixes the horizontal errors with the vertical errors; for
lines with making angles 9 with the horizontal which are
close to zero depth values are highly inaccurate (when
a= 0 matching is impossible). A crude way of compen
sating for this is to multiply J by a matrix producing an
expansion factor of 1/sin9 in depth before using the above
formulae.. Secondly the points detected on continuous
lines are not randomly scattered about the line, but wander
slowly from one side of the line to the other. This can be
compensated for by replacing n by a smaller effective
nurnber of points on the line which counts these wander
ings. Though crude, this model then captures most of the
essential information about stereo errors.

As an alternati ve to the calculation of an a priori covari
ance we can try to estimate the covariance from our data.
Fit a line (Po, Yo) to the data, the true line being The true
line is (p, v) with local coordinates as above. Suppose
one of the data points (x, y, z) projects to
(X, Y) = (xJz, ylz) in the left image. Let a = (X, Y, l)',
The condition that this image point lies on the projection
of the true line into the image is p-taxv) =0 which linear
ises to

S~p= : [~ ~;12]
We must transform this result to world coordinates. If the
Jacobian matrix of the map from disparity space to the
world is J Then
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vi 0

v~ 0

p =Po + Pivi + P2V2

12. Error Estimation

We must now estimate the error with which our system
localises a line. For such a complex sensor a complete
description of the error process is impossible. We will
describe two ways.to approximate it.

First we will consider an idealised situation where we are
observing not lines, but sets of n collinear points. These
are matched without error between left and right images.

The imaging process is assumed to produce equal uncorre
lated errors of variance c:Jl in their left and right image X
coordinates and the left image Y coordinate, so that fitting
a line by orthogonal regression in (XL, XR, Yv-space
(disparity space) is optimal'", This then produces a cen
troid position error of variance cr/n· and an angular error
of variance 12cr2/nZ2 where 1 is the length of the line in
disparity space.

In terms of local line coordinates in disparity space the
error covariance is thus (12 is the 2x2 unit matrix)

""

v =Vo + VIVI + VZVZ

(note that v is unit to first order) and we use
(Pl' Pz, vi. Vv as local coordinates on the line manifold.
The transformations between local and global descriptions
are thus

combination of error prone processing stages: acquisition
of a pair of images, edge detection to sub-pixel acuity by
a Canny operator", stereo edge matching by the PMF algo
rithm", and finally plane, line and circle fitting to produce
the geometrical descriptive base (GDB)IO.

11. Description of Stereo Primitives

The most reliable part of the GDB is a list of straight
edges found in the scene (this is the basic input to our
matcher). The endpoints of these edges are not very
informative due to unpredictability in segmentation, so the
measurement primitive which we output is essentially a
straight line in three space. We need a convenient global
description of these primitives; the most convenient is as a
pair of vectors (Po, yo) where Po is the position of a point
on the line and Vo is its direction vector. We now choose
vectors VI, v2 such that the Vi form a basis, and add these
to our description of the line in the GDB, this then forms
an intrinsic reference frame which will be carried with the
line throughout its history.

Any nearby line can be described by a position vector and
a direction vector
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standing of the geometry.

There are a very large number of possible relationships,we
might like to test and impose (for example that three lines
form a rectangular trihedral vertex). Rather than try to
include all useful constraints we can implement a vocabu
lary of pairwise constraints (orthogonality, incidence ~ro

perties) in terms of which the more complex constramts
can be expressed.

For example the condition on the state vector that two
lines with directions v, v' be orthogonal is

(vo+ VIVI + v2viJ(vo' + VI'V{ + V2'V{) =0

which linearises to

, " , + ' 'y ' - 0vo'vo' + VIYI'Vo + V2V2'VO + VI VO'VI V2 Vo 2 -

The condition that the two lines intersect is

(p - p')-(VXV') =0

which linearises to

(PO - Po')-(voxvo')

+ PIVI '(VoXVO') + P2V2'(VoXVO') - PI'V{(VoXvo') - P2'V{'(VoXvo')

+ VI(PO - PO')-(VIXVO') + V2(PO - PO')-(V2XVO')

+ VI'(PO - PO')-(VoXVI') + V2'(PO - Po)'(VOXV2)=0

These constraints would be sufficient to impose such com
posite hypotheses as, for example, that three lines form a
rectangular trihedral vertex.

14. Multiple Views

In the case of multiple stereo views the primitive describ
ing sensor calibration is the motion of the stereo rig rela
tive to the background frame. The most convenient global
description of such a rotation is as a rotation matrix Rand
a translation vector 1. Nearby rotations have the form

X-7Rx+t+roxx+'t

and the pair of vectors «o, 't) can be used as local coordi
nates for this type of primitive.

Supposewe want to work in the frame of our latest stereo
view, and we have already built up a model with an asso
ciated covariance matrix from previous views. The
matcher relates the old view to this and calculates an
approximate transformation (Ro, to) between the two
views, this is used to transform all the elements of the old
model into the new frame. This transformation is inaccu
rate, so the 'calibration error' between views (oi, r) is
adjoined to the state vector of the model. For each pair of
matched lines (P,v) -7 (p',V) the constraint that they are
related by the rigid motion (R, t) is firstly that P moves
onto the line (p' ,V)

(p' - Rp -t) - (p' - Rp -t)-v' v' =0

(where a= a/lal), and secondly that the direction vectors
coincide

v' -Rv =0

Each of these represents only two independent constraints,
which can be extracted by taking the scalar product with
VI ' and v{ The result linearises to

(PO' - PO)'VI' + PI' - PIVI'VI' - P2V2'VI'

- v{(Po' - Po)-Yo - (POXVI) .CI) - Y{'t = 0

(Po' - PO)'Y2' + p{ - PIVI'Y{ - P2Y2'V2'

- v{(Po' - Po)·Yo - (POXV2)'CI) - v{'t = 0

- VO'VI' + v{ - VIYI'YI' - V2Y2'YI' - (VoXVI)'CI) = 0

-YO'Y2'+ v{ - VIVI 'Y2'- V2Y2'Y2'- (YoXV2)'CI) = 0

The correction to the new view of the line is adjoined
(with initial value zero) to the state vector, and the con
straints imposed. We can choose to keep either of the
resulting descriptions, since we want to work in the frame
of the latest view we keep the new description.

15. Discussion

It will be clear that the above scheme requires heavy com
putations and the storage of large amounts of data. In this
form it will serve as a test-bed for investigating the impor
tance of various factors in sensor combination. Its major
advantages are that it loses no information, can deal with
general geometrical structures in a natural way, and it is
very convenient to introduce new types of measurement or
constraint. A major complication is our insistence that
many of the correlations (off diagonal terms in the covari
ance matrix) are of great importance; for example sensor
calibration errors are correlated with all the measurements
from that sensor, and their omission would make nonsense
of any results, this is particularly important in stereo
vision, where accurate calibration is often difficult

A practical algorithm would need to avoid much of the
calculation however. One way to approach this is dis
cussed in Durrant-Whyte", where the calculation of the
optimal estimator is arranged in such a way that it is clear
when correlations are no longer contributing to the solu
tion.

Another possible source of error is the linearisation we
must make to keep the analysis tractable. Weare dealing
with a special case of the extended Kalman filter which is
often very successful (see Gelb l3 for some examples), but
is not guaranteed to be stable or optimal. Basically we
must try to ensure that the linear approximation is always
justified if we are to be safe. One can deal directly with
the non-linear problem'! but these methods are much
more complex and less flexible. It is also worth noting
that since we apply constraints only to linearised order,
exact consistency is not achieved. We must relinearise
about the new solution (keeping the old covariances of
course) and recurse to an exact solution if required.

The above problem leads on to the question of robustness
in the statistical sense. Gauss-Markov theory requires the
assumption that a minimum variance estimator is sensible.
This can break down very badly if the data has non
negligible probabilities for 'large' errors, so-called flyers.
Robust statistical methods protect against these flyers
(essentially samples from a second random process about
which we have little information) in many ways. One
way is to minimise some other quantity thanthe variance.
Such methods can lead to much heavier computation. A

--



more direct method is to try to catch the flyers before they
are processed, and there are principled ways of doing this
when one has fairly large samples. We have a problem
with sequential processing however, since by the time one
detects an early flyer it will already have been merged
into the model. In stereo vision extremal boundaries are
one source of this problem. Not corresponding to real enti
ties, they move between views, but for closely space
views this movement may be of the same order of magni
tude as the allowable errors in matching. There will have
to be heuristics built in to a matcher to protect a module
of the form we envisage from these problems. (Informa
tion on robust statistical methods can be found in Reyl~.

Finally we present an example of the algorithm at work.
Figure 1 shows a typical view of the widget generated by
the WINSOM body modeller. Straight edges have been
extracted from eight views circling above the object,
matched and filtered by length and frequency of
occurence, then combined to produce the rough skeleton
model in Figure 2. The pairs of edges of this skeleton are
then checked for closeness to intersection and perpendicu
larity (the two examples of constraints given above) and
when this is significant the constraint is imposed
optimally. There is one iteration about the new solution.
The result is Figure 3 (where edges have been extended
up to vertices). As an example of the rapidity of conver
gence let ebe the angle between the lines 7 and 10, and 0
be their distance of closest approach. These lines are
detected as a possible perpendicular vertex. The values of
eand 0 at each iteration are:

Iteration e 0
0 89.5 0.05
I 89.9994 0.001
2 89.99999 0.00002

References

1 Pollard, S. B., Porrill, J., Mayhew, J. E. W., Frisby,
J. P., Matching Geometrical Descriptions in 3-Space,
AIVRU Memo 022, 1986.

2 Crowley, J. L., Navigation for an Intelligent Mobile
Robot, IEEE J. Rob. Aut .. 31-41, 1985.

3 Faugeras, O. D., Ayache N., Faverjon, B., Building
Visual Maps by Combining Noisy Stereo Measurements,
presented at IEEE Robotics conference . San Francisco
1986.

4 Durrant-Whyte, H. F., Consistent Integration and Pro
pagation of Disparate Sensor Observations, Thesis, Univer
sity of Pennsylvania, 1985

5 Albert, A., Regression and the Moore-Penrose Pseudo
Inverse, Academic Press , New York , 1972.

6 Morrison, D. F., Multivariate Statistical Methods,
McGraw-Hill, 1976.

7 Mitra, S. K., Generalised inverses of matrices and
applications to linear models, Handbook of Statistics,
North-Holland. 1980.

8 Canny, J. F., Finding Edges and Lines in Images, MIT
AI memo, 720, 1983.

101

9 Pollard, S. B., Mayhew, J. E. W., Frisby, J. P., PMF:
A Stereo Correspondence Algorithm Using a Disparity
Gradient Limit, Perception, 14. 449-470, 1985 .

10 Porrill, J., Pridmore, T. P., Mayhew, J. E. W.,
Frisby, J. P., Fitting Planes, Lines and Circles to Stereo
Disparity Data, AIVRU memo 017.1986.

11 Tarantola, B., Valette, B., Generalised Nonlinear
Inverse Problems Solved Using the Least Squares Cri
terion, Rev. Geophys. & Space Phys, 20, 2, 219-232. 1982.

12 Rey, W. J., Introduction to Robust and Quasi-Robust
Statistical Methods, Springer-Verlag, 1983.

13 Gelb, A. (ed.), Applied Optimal Estimation, M. I. T.
Press, 1974.

Figure 1. View of the widget.

Figure 2. Skeleton model of the widget

Figure 3. Widget after one Geomstat iteration


