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Robot programming and
robot vision

So far, we have discussed in some detail the automatic processing and analysis of
images and image data. Any information about position and orientation of objects
has been derived in an image frame for reference, that is, with respect to the two-
dimensional array of pixels representing the imaged scene. However, objects only
exist in the so-called real world (i.e. the world we are imaging) and if we wish to
do something useful with the information we have extracted from our digital
images, then we have to address the relationship between images and the three-
dimensional environment from which they are derived. Even then, this is typically
not enough since there is little point in knowing where things are if we don’t know
how to manipulate and move them. In this chapter, we turn our attention to these
issues and we will discuss how we can usefully describe the three-dimensional
position and orientation of objects relative to any other object, how to go about
configuring a task to effect their manipulation, and how, given their image position
and orientation, we can derive their three-dimensional pose.

Recall that imaging is a projective process from a three-dimensional world to
a two-dimensional one and, as such, we lose one dimension (typically the object
depth or range) when we perform this imaging. As we noted in Chapter 1, much
of computer vision is concerned with the recovery of this third dimension but, so
far in this book, we have not dealt with it in any detail. Most of the discussion
of recovery of depth information is included in the next chapter on image
understanding. However, to make this chapter complete and self-contained, we
discuss at the end a popular and versatile technique called structured-light, which
allows us to compute the distance between a camera and objects in the field of view.

Before proceeding, we will briefly review robot programming methodologies
to provide a context for the approach that we adopt in this book.
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8.1 A brief review of robot programming
methodologies

Modern robotic manipulators, which have their origins in telecheric and
numerically controlled devices, have been developing for the past twenty-five years.
As robots have developed, so too have various methods evolved for programming
them and, consequently, modern commercially available robot manipulators make
use of many programming techniques which exhibit a wide spectrum of sophisti-
cation. There are, broadly speaking, three main categories of robot programming
system which are, in order of the level of sophistication: guiding systems; robot-
level or explicit-level systems; and task-level systems.

Guiding systems are typified by the manual lead-through approach in which
the manipulator is trained by guiding the arm through the appropriate positions
using, for example, a teach-pendant, and recording the individual joint positions.
Task execution is effected by driving the joints to these recorded positions. This
type of manual teaching is the most common of all programming systems, and
though several variations on the theme have been developed, such as trajectory
control, the explicit interactive nature remains the same.

Robot-level programming systems, for the most part, simply replace the
teach-pendant with a robot programming language: manipulator movements are
still programmed by explicitly specifying joint positions. However, several lan-
guages also facilitate robot control in a three-dimensional Cartesian space, rather
than in the joint space. This is effected using the inverse kinematic solution of the
manipulator arm (the kinematic solution allows you to compute the position of the
end-effector or gripper in a three-dimensional Cartesian frame of reference, given
the manipulator joint positions; the inverse kinematic solution allows you to com-
pute the joint positions for a given position and orientation of the end-effector).
The more advanced of these languages incorporate structured programming control
constructs (such as are found in most modern programming languages, e.g. ADA,
Modula-2, and Pascal) and they make extensive use of coordinate transformation
and coordinate frames, With this approach, the robot control is defined in terms
of transformations on a coordinate frame (a set of XYZ-axes) associated with, and
embedded in, the robot hand. Off-line programming is more feasible as long as the
transformations representing the relationships between the frames describing the
objects in the robot environment are accurate. It is this approach which we adopt
in this book and these techniques will be discussed in detail in the remainder of the
chapter.

Task-level robot programming languages attempt to describe assembly tasks
as sequences of goal spatial relationships between objects and, thus, they differ
from the other two approaches in that they focus on the objects rather than on the
manipulator. The robot is merely a mechanism to achieve these goals. They
typically require the use of task planning, path planning, collision avoidance and
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world-modelling: this level of sophistication is not yet widely available on a
commercial basis.

8.2 Description of object pose with
homogeneous transformations

Robot manipulation is concerned, in essence, with the spatial relationships between
several objects, between objects and manipulators, and with the reorganization of
these relationships. We will use homogeneous transformations to represent these
spatial relationships. However, we first need to review a little vector algebra to
ensure that we are equipped with the tools to develop this methodology.

A vector v=ai + bj + ck, where i,j and k are unit vectors along the X-, Y-,
and Z-axes of a coordinate reference frame (see Figure 8.1), is represented in
homogeneous coordinates as a column matrix:

where:

o _
il I
Tl TIx

o
Il
T I~

Thus, the additional fourth coordinate w is just a scaling factor and means that a
single three-dimensional vector can be represented by several homogeneous
coordinates. For example, 3i + 4f + 5k can be represented by

3 6
4 8
5] or by | 10
1 2

Note that, since division of zero by zero is indeterminate, the vector

S O OO

is undefined.
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ai +bj+ck

Figure 8.1 Coordinate reference frame.

Vectors can be combined in two simple ways. Given two vectors a and b:

a= axi'F" ayj+ azk
b= bxi+ byj+ bzk

The vector dot product is defined:
a-b = axby + ayby + azb;
and is a scalar quantity. The vector cross product is defined:
ax b =(aybs — azby)i + (a:bx — axb)j + (a:by — aybi)k

It may also be written as:

i j k
axb=|a a a
b. b b,

that is, as the expansion of this 3 X 3 determinant.

A general transformation H, in three-dimensional space, representing
translation, rotation, stretching, and perspective distortions, is a 4 x4 matrix
in homogeneous formulation. Given a point represented by the vector u, its
transformation v is represented by the matrix product:

v=Hu
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The transformation H corresponding to a translation by a vector ai + bj -+ ck is:

1 0 0 «a
01 0 b
H=TRANS(a,b,c)= 00 1 ¢
0 0 0 1
X
For example: to transform u = i by H:
w
1 0 0 «a X
_ 10 1 0 b y
v=Hu=14 91 c| |z
|0 0 0 1 w
[ x -+ aw
| y+bw
T z+ow
| w
[ x/w+a
1 yw+b
T | zfw+e
1

Thus, we have the familiar property of translation of a vector by another vector
being simply the addition of their respective coefficients.

The transformation corresponding to rotations about the X-, Y-, or Z-axes
by an angle @ are:

1 0 0 0]

0 cosf® ~—sinf O

Rou(X,0) = 0 sin cosf O
|0 0 0 1]

" cosf O sinf O]

_ 0 1 0 0
RotY,0)=1 _6no 0 cosd 0
| 0 0 0 1]

[cos§ —sinf 0 O]

Rot(Z,0) = sxgﬁ cogﬂ (1) 8
0 0 0 1]

Now, from our point of view, we come to the most important aspect of
homogeneous transformations in that we can interpret the homogeneous
transformation as a coordinate reference frame. In particular, a homogeneous
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transformation describes the position and orientation of a coordinate frame with
respect to another previously defined coordinate frame. Thus, the homogeneous
transformation represents not only transformations of vectors (points) but also
positions and orientations.

Specifically, a coordinate frame is defined by four things: the position of its
origin and the direction of its X-, Y-, and Z-axes. The first three columns of the
homogeneous transformation represent the direction of the X-, Y-, and Z-axes of
the coordinate frame with respect to the base coordinate reference frame, while the
fourth column represents the position of the origin. This is intuitively appealing: a
homogeneous transformation, which can be a combination of many simpler
homogeneous transformations, applies equally to other homogeneous trans-
formations as it does to vectors (pre-multiplying a 4 X 1 vector by a 4 X 4 matrix
yields a 4 X 1 vector; pre-multiplying a 4 X 4 matrix by a 4 X 4 matrix yields a 4 x 4
matrix which is still a homogeneous transformation). Thus, we can take a
coordinate reference frame and move it elsewhere by applying an appropriate
homogeneous transformation. If the coordinate frame to be ‘moved’ is originally
aligned with the so-called base coordinate reference frame, then we can see that the
homogeneous transformation is both a description of how to transform the base
coordinate frame to the new coordinate frame and a description of this new
coordinate frame with respect to the base coordinate reference frame. For example,
consider the following transformation:

H = Trans (10,10, 0) Rot (Y, 90)

0010
0100
- Trans (10,1000 | _ | o o ¢
| 0 0 0 1
0 0 1 10]
_ 01 0 10
-1 00 O
0 00 1

The transformation of the three vectors corresponding to the unit vectors
along the X-, Y-, and Z-axes are:

1
1

0 01 10] 1 " 10]

0 1 0 10{ |0f_ | 10
-1 00 o ol | -1}
| 000 1] |1] [ 1
T 0 0 1 10] [o] [ 10]

0 1 0 10| 1y _| 11| o
-1 00 0 of 0}’
| o000 1] 1] | 1
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0 01 10 0 11

01 0 10 0] | 10 .
100 0 1= 0 respectively

0 00 1 1 1

The direction of these (transformed) unit vectors is formed by subtracting the
vector representing the origin of this coordinate frame and extending the vectors to
infinity by reducing the scale factor to zero. Thus, the direction of the X-, Y-, and
Z-axes of this (new) frame are

0

—1l , and

SO = O
(=N

Similarly, the transformation of the null vector, i.e. the vector which
performs no translation and thus defines the origin of the base coordinate frame,
is given by:

10 0 01 1070
10 | o1 0 10f]0
o[-t 00 0f]o0
1 000 1] |1

These four results show us that the new origin is at coordinates (10, 10, 0); the new
X-axis is directed along the Z-axis of the base coordinate reference frame in the
negative direction; the new Y-axis is directed along the Y-axis of the base
coordinate reference frame in the positive direction; and the new Z-axis is directed
along the X-axis of the base coordinate reference frame in the positive direction.
This can be seen in Figure 8.2. You should try to do this transformation graphically
but remember when deciding in which sense to make a rotation that: a positive
rotation about the X-axis takes the Y-axis towards the Z-axis; a positive rotation
about the Y-axis takes the Z-axis fowards the X-axis; a positive rotation about the
Z-axis takes the X-axis towards the Y-axis.

The rotations and translations we have been describing have all been made
relative to the fixed base reference frame. Thus, in the transformation given by:

H=Trans(10,10,0) Rot (Y, 90)

the frame is first rotated around the reference Y-axis by 90°, and then translated
by 10i + 10j + Ok.

This operation may also be interpreted in reverse order, from left to right, viz:
the object (frame) is first translated by 107+ 10j + Ok; it is then rotated by 90°
around the station frame axis (Y'). In this instance, the effect is the same, but in
general it will not be. This second interpretation seems to be the most intuitive since
we can forget about the base reference frame and just remember ‘where we are’:
our current station coordinate reference frame. We then just need to decide what
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H=Trans{10,10, 0} Rot (Y, 90)

Figure 8.2 Interpreting a homogeneous transformation as a coordinate
frame.

transformations are necessary to get us to where we want to be based on the
orientation of the station axes. In this way, we can get from pose to pose by
incrementally identifying the appropriate station transformations, Hi, H;, Hs,
... Hy, which we apply sequentially, as we go, and the final pose is defined with
respect to the base simply as:

H=H +H,«H3yx ... xH,.

In order to clarify the relative nature of these transformations, each of these
frames/transformations is normally written with a leading superscript which
identifies the coordinate frame with respect to which the (new) frame/
transformation is defined. The leading superscript is omitted if the defining frame
is the base frame. Thus the above transform equation is more correctly written:

H=H« M, « Y pps o« g

As a general rule, if we post-multiply a transform representing a frame by a second
transformation describing a rotation andfor translation we make that rotation/
transformation with respect to the frame axis described by the first transformation.
On the other hand, if we pre-multiply the frame transformation representing a

163



Robot programming and robot vision

rotation/transformation then the rotation/transformation is made with respect to
the base reference coordinate frame.

At this stage, we have developed a system where we can specify the position
and orientation of coordinate reference frames anywhere with respect to each other
and with respect to a given base frame. This, in itself, is quite useless since the
world you and I know does not have too many coordinate reference frames in it.
What we really require is a way of identifying the pose of objects. In fact, we are
about there. The trick, and it is no more than a trick, is to atiach a coordinate
frame to an object, i.e. symbolically glue an XYZ-frame into an object simply by
defining it to be there. Now, as we rotate and translate the coordinate frame, so
too do we rotate and translate objects. We shall see this at work in the next section
on robot programming.

8.3 Robot programming: a wire crimping task
specification

Perhaps the best way to introduce robot programming is by example and, so, we
will develop our robot programming methodology in the context of a specific
application: automated wire crimping.

The wire crimping task requires that a robot manipulator grasp a wire from
a tray of wires (see Figure 8.3). The wires are short and curved but they are flexible
and the curvature varies from wire to wire. We will assume that, although the wires
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Figure 8.3 (a) A tray of flexible electrical wires (b) an image of ‘which
yields a point on a wire which is suitable for grasping (c) allowing the
robot to pick up the wire and manipulate it.
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overlap, they all lie flat on the tray. The wire must be grasped near its end by the
robot, at a point which has been identified using a vision system, and the wire end
must be inserted in a crimping machine, and the crimped end then must be inserted
in a plastic connector. There are a few other related tasks, such as crimping the
other end and inserting it in another connector, but, for the purposes of this
example, we will assume that the task is complete once the wire has been crimped
the first time. In addition, we must ensure that the manipulator does not obstruct
the camera’s field of view at the beginning of each crimp cycle and, thus, it must
be moved to an appropriate remote position. By defining a series of manipulator
end-effector positions Mn, say, this task can be described as a sequence of
manipulator movements and actions referred to these defined positions. For
example, the task might be formulated as follows:

MO: Move out of the field of view of the camera.
Determine the position and orientation of the wire-end and the grasp point
using the vision system.
M1: Move to a position above the centre of the tray of wires.
M?2: Move to an approach position above the grasp point.
M3: Move to the grasp position
Grasp the wire.
M4: Move to the depart position above the grasp point.
MS5: Move to the approach position in front of the crimp.
M6: Move to a position in which the wire-end and the crimp are in contact.
M7: Move to a position such that the wire-end is inserted in the crimp.
Actuate the crimping machine.
M8: Move to the depart position in front of the c¢rimping machine.
M9: Move to a position above the collection bin.
Release the wire.

This process is repeated until there are no more wires to be crimped.

One of the problems with this approach is that we are specifying the task in
terms of movements of the robot while it is the wire and the crimp in which we are
really interested. The object movements are implicit in the fact that the manipulator
has grasped it. However, we will try to make up for this deficiency to some extent
when we describe the structure of the task by considering the structure of the task’s
component objects: the manipulator, the end-effector, the wire grasp position,
the wire end, the crimping machine, and the crimp. In particular, we will use the
explicit positional relationships between these objects to describe the task structure.
Since coordinate frames can be used to describe object position and orientation,
and since we may need to describe a coordinate frame in two or more ways (there
is more than one way to reach any given position and orientation), we will use
transform equations to relate the two descriptions. A simple example, taken from
‘Robot manipulators’ by R. Paul (1981), will serve to illustrate the approach.

Consider the situation, depicted in Figure 8.4, of a manipulator grasping a toy
block. The coordinate frames which describe this situation are as follows:
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z
Y\

76

Figure 8.4 A manipulator grasping a block.

V4 is the transform which describes the position of manipulator with
respect to the base coordinate reference frame.

276 describes the end of the manipulator (i.e. the wrist) with respect to the
base of manipulator, i.e. with respect to Z.

T6E  describes the end-effector with respect to the end of the manipulator,
i.e. with respect to 76.

B describes a block’s position with respect to the base coordinate
reference frame.

BG  describes the manipulator end-effector with respect to the block, i.e.
with respect to B.

In this example, the end-effector is described in two ways, by the transformations
leading from the base to the wrist to the end-effector:

Z*x2T6xT°E
and by the transformations leading from the block to the end-effector grip position:
B*5G
Equating these descriptions, we get the following transform equation:
Z+%T6+ T°E= B +2G
Solving for 76 by multiplying across by the inverse of Z and TSp:
ZT6= 2 ' xBx2G«T°E"!
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76 is a function of the joint variables of the manipulator and, if known, then
the appropriate joint variables can be computed using the inverse kinematic
solution. 76, then, is the coordinate which we wish to program in order to effect
the manipulation task: an arm position and orientation specified by 76 is thus
equivalent to our previous informal movement Mn:

Move Mn = Move 2T6

and, since we can compute 76 in terms of our known frames, we now have an arm
movement which is specified in terms of the frames which describe the task
structure. Assigning the appropriate value to 76 and moving to that position,
implicitly using the inverse kinematic solution:

2T6:= Z"' «B*xBG+ TOE~!
Move %76

What we have not yet done, and we will omit in this instance, is to fully specify
each of these frames by embedding them in the appropriate objects and specifying
the transformations which define them. We will do this in full for the wire crimping
application.

Before proceeding, it is worth noting that, in this example, as the position of
the end-effector with respect to the base reference system is represented by:

Z«%T6x TSE

this allows you to generate general-purpose and reusable robot programs. In
particular, the calibration of the manipulator to the workstation is represented by
Z, while if the task is to be performed with a change of tool, only £ need be altered.

Returning again to the wire crimping application, the transforms (i.e. frames)
which are used in the task are as follows.

As before:

VA is the transform which describes the position of manipulator with
respect to the base coordinate reference frame.

%16 describes the end of the manipulator (i.e. the wrist) with respect
to the base of manipulator, i.e. with respect to Z.

TR describes the end-effector with respect to the end of the

manipulator, i.e. with respect to 76.

We now define:

ooV the position of the end-effector out of the field of view of the
camera and defined with respect to the base coordinate reference
system.

CEN the position of the end-effector centred over table defined with

respect to the base coordinate reference system.
WDUMP the position of the end-effector over the bin of crimped wires,
defined with respect to the base coordinate reference system.
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w the position of the wire end, defined with respect to the base
coordinate reference system.
YwG the position of end-effector holding wire, defined with respect to

the wire end.

Vo4 the position of end-effector approaching grasp position, defined
with respect to the wire-grasp position.

YSwD the position of end-effector departing grasp position (having
grasped the wire), defined with respect to the original wire-grasp

position.

CcM the position of the crimping machine, defined with respect to the
base coordinate reference system.

M the position of the crimp (ready to be attached), defined with
respect to the crimping machine.

ccA the position of the wire end approaching crimp, defined with
respect to the crimp.

ccc the position of the wire end in contact with the crimp, defined
with respect to the crimp.

ccr the position of the wire end inserted in the crimp, defined with
respect to the crimp.

ccp the position of the wire end departing from the crimping machine
(the crimp having been attached), defined with respect to the
crimp.

The manipulator movements MO through M9 can now be expressed as
combinations of these transforms:

MO: T6=2Z"'+00V+E!

Ml: T6=Z"'«CENx*E™!

M2: T6=Z'+W+WGsWA=+E™!
M3: T6=Z"'+«Ws+WG+E™!

M4: T6=Z"'+W*«WG+WD+E™!
MS5: T6=Z"1+CM«C*CA WG «E™"
M6: T6=Z"'+CM+«C*xCC+*WG*E™!
M7: T6=Z"1'+«CM+C+CI+WG+E™!
M8: T6=Z"'+CM*+C+CD+WG=*E™!
M9: T6=Z"'«WDUMP+E™!

Note that WA, WD, CA, CI, and CD are all translation transformations concerned
with approaching and departing a particular object. In order to allow smooth
approach and departure trajectories, these translation distances are iterated from
zero to some maximum value or from some maximum value to zero (in integer
intervals) depending on whether the effector is approaching or departing. For
example: "CWA is the approach position of the end-effector before grasping the
wire and is (to be) defined as a translation, in the negative Z-direction of the WG
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frame, of the approach distance z_approach, say. Thus:
"W A = Trans(0, 0, — (z_approach))

where:

z_approach = z_approach_initial
z_approach_initial — delta
z_approach_initial — 2 * delta

0
It should be noted well that this type of explicit point-to-point approximation of
continuous path control would not normally be necessary with a commercial
industrial robot programming language since they usually provide facilities for
specifying the end-effector trajectory.

To complete the task specification, we now have to define the rotations and
translations associated with these transforms/frames. Most can be determined by Xz
empirical methods, embedding a frame in an object and measuring the object
position and orientation. Others, W and WG in particular, are defined here and
their components determined by visual means at run time.

Figure 8.5 Z - the base of the manipulator.

1 Z: The position of the position of manipulator with respect to the base
coordinate reference frame

We will assume that the base coordinate system is aligned with the frame embedded Z

in the manipulator base, as shown in Figure 8.5. Thus:

Z = I = Identity transform

Note that the frame defining the manipulator base is dependent on the kinematic
model of the robot manipulator.

[0 T6: the position of the end of the manipulator with respect to its base
at Z Yre
The T6 frame, shown in Figure 8.6, is a computable function of the joint variables. 76
Again, the frame which defines the end of the manipulator is based on the Xrs
kinematic model. However, there is a convention that the frame should be
embedded in the manipulator with the origin at the wrist, with the Z-axis directed By
outward from the wrist to the gripper, with the Y-axis directed in the plane of H
movement of the gripper when it is opening and closing, and with the X-axis
making up a right-hand system. This is shown more clearly in Figure 8.7 which
depicts a more common two-finger parallel jaw gripper.

It is also worth noting that, although we will specify the orientation of T6 by
solving for it in terms of other frames/transforms in the task specification, there is | Figure 8.6 T6 - the end of the manipulator.
a commonly used convention for specifying the orientation of objects, in general,
and 76 in particular. This convention identifies three rotations about the station
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—& N

Roll

z Y
Pitch

Figure 8.7 Specifying the orientation of T6 using roll, pitch, and yaw
angles.

coordinate frame embedded in the object which are applied in turn and in a
specified order. The rotations are referred to as a roll of ¢ degrees about the station
Z-axis, a pitch of 8 degrees about the station Y-axis, and yaw of  degrees about
the station X-axis. The order of rotation is specified as:

RPY(¢,6, ) = Rot(Z, ¢)Rot(Y,0)Rot(X, })

Thus, the object is first rotated ¢~ about the Z-axis, then 6° about the current
station Y-axis, and finally y° about the station X-axis; refer again to Figure 8.7.

Ol  E: the position of the end-effector with respect to the end of the
manipulator, i.e. with respect to T6

The frame E representing a special-purpose end-effector for grasping wires is

embedded in the tip of the effector, as shown in Figure 8.8, and hence is defined

by a translation 209 mm along the Z-axis of the 76 frame and a translation of

—15 mm along the Y-axis of the 76 frame. Thus:

TSE = Trans(0, — 15, 209)

1 OOV: the position of the end-effector out of the field of view of the
camera .

This position is defined, with respect to the base coordinate system, such that the

end-effector is directed vertically downwards, as shown in Figure 8.9. Thus ooV

is defined by a translation (of the origin) to the point given by the coordinates

(150, 300, 150) followed by a rotation of — 180° about the station X-axis:

OO0V = Trans(150, 300, 150) Rot(X, —180)
[0 CEN: the position of the end-effector centred over the tray, defined with

respect to the base coordinate reference frame
This position is defined such that the end-effector is directed vertically downwards
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Figure 8.8 E - the end-effector.

z
a
e
Ve
Z, ZT6E
X: =00V
Ze
—p Y
V4 Y,

Xz

X

Figure 8.9 OOV - the end-effector out of the camera’s field of view.

over the centre of the tray, as shown in Figure 8.10. Thus, CEN is defined by a
translation (of the frame origin) to the point given by the coordinates (0, 360, 150)
followed by a rotation of —180° above the station X-axis:

CEN = Trans(0, 360, 150) Rot(X, —180)

0  WDUMP: the position of the end-effector over the bin of crimped wires,
defined with respect to the base coordinate reference frame

This position is defined such that the end-effector is directed — 45° to the horizontal

over the centre of a bin as shown in Figure 8.11. Thus, WDUMP is defined by a

translation of the frame origin to the point given by the coordinates (0, 500, 160)

followed by a rotation of —135° about the station X-axis.

WDUMP = TRANS(0, 500, 160) Rot(X, —135)

[0  W: the position of the wire end, defined with respect to the base
coordinate reference frame
The origin of the wire frame W is defined to be at the end of the wire, with its
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Figure 8.10 CEN - the end-effector centred over the tray of wires.
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Figure 8.11 WDUMP - the end-effector over the bin of crimped wires.
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Z-axis aligned with the wire’s axis of symmetry. The X-axis is defined to be normal
to the tray on which the wires lie, directed vertically upwards. The Y-axis makes
up a right-hand system. Since we are assuming that the wires are lying flat on the
tray, both the X- and Y-axes lie in the plane of the tray. Furthermore, we will
assume that the tray lies in the X—Y plane of the base reference frame. Thus:

W = Trans(x, y, 0)Rot(z,0)Rot(y, —90)

It is the responsibility of the vision system to analyse the image of the wires and
to generate the components of this frame automatically, specifically by computing
x,y, and 6. W is illustrated in Figure 8.12,

0 WG: the position of the end-effector holding the wire, defined with respect
to the wire end
The origin of the wire gripper frame WG is defined to be located a short distance
from the origin of W, on the wire’s axis of symmetry. The Z-axis is defined to be
normal to the plane of the tray, directed downwards. The Y-axis is defined to be
normal to the axis of symmetry of the wire, in the plane of the tray. The Y-axis
makes up a right-hand system. WG is illustrated in Figure 8.13.
It is important to note that we define the WG frame in this manner since this

Xw z
Zw

/ YW Y

Figure 8.12 W — the position of the wire-end.

// XW
Zw
Yw
Xwe
/ we ™ Yuo
4
Zwe

Figure 8.13 WG — the wire grasp position.

175



Robot programming and robot vision

is how the end-effector E will be oriented when grasping the wire, i.e. with the
Z-axis pointing vertically downwards and the Y-axis at right-angles to the wire.
As with W, the vision system must return a homogeneous transformation
defining this frame; we cannot assume that WG will be a fixed offset from W since
we are assuming that the curvature of the wire near the end will vary from wire to

wire.

1  WA?: the position of the end-effector approaching the grasp position,
defined with respect to the wire-grasp position

This is defined to be a position directly above the wire grasp point. As such, it

simply involves a translation in the negative direction of the Z-axis of the WG

frame. Since it is wished to approach the wire along a known path, many approach

positions are used in which the translation distances get successively smaller. This

motion, then, approximates continuous path control. Thus:

WA = Trans (0,0, — (z_approach)),

where

z_approach = z_approach_initial
z_approach_initial — delta
z_approach_initial — 2 * delta

0
WA is illustrated in Figure 8.14.
[0  WD: the position of the end-effector departing the grasp position (having
grasped the wire), defined with respect 1o the original wire-grasp position

In a similar manner to WA, WD is defined as a translation in the negative direction
of the Z-axis of the WG frame, except that in this case the translation distance

becomes successively greater. Hence:
WD = Trans(0, 0, — (z_depart)),

where:

z.depart =0,
delta,
2 x delta,

z_depart_final

0 CM: the position of the crimping machine, defined with respect to the
base coordinate reference system .
The frame CM, representing the crimping machine, is defined to be embedded in
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a corner of the machine, as shown in Figure 8.15. Thus:

CM = Trans(150, 300, 0)

Note that the coordinates of the origin of CM, (150,300,0), are determined
empirically.

O C: the position of the crimp (ready to be attached), defined with respect to
the crimping machine

The origin of C, representing the crimp, is defined to be at the front of the crimp,

of the radial axis; the Z-axis is defined to be coincident with the radial axis (directed

in toward the crimp), the X-axis is defined to be directed vertically upward, and the

Y-axis makes a right-hand system; see Figure 8.16. Thus:

C = Trans(40, 40, 65)Rot (Y, 90)Rot (Y, 180)

0 CA: the position of the wire end approaching the crimp, defined with
respect to the crimp

CA is a frame embedded in the end of the wire, in exactly the same manner as W,

except that it is positioned in front of, i.e. approaching, the crimp. Thus, as shown

in Figure 8.17, CA simply involves a translation of some approach distance in the

negative direction of the Z-axis of C.

Since, in a similar manner to WA, we want to approach the crimp along a
known path, many approach positions are used such that the translation distance
gets successively smaller.

Thus:

CA = Trans(0, 0, — (z_approach)),
where:

zZ_approach = z_approach_initial
z_approach_initial — delta,
z_approach_initial — 2 * delta

0

[0 CC: the position of the wire end in contact with the crimp, defined with
respect to the crimp

Since the frames embedded in the end of the wire and the frame embedded in the

crimp align when the wire is in contact with the crimp, this transform is simply the

identity transform. Had either of these two frames been defined differently, CC

would have been used to define the relationship between the end of the wire and

the crimp, which would be, in effect, a series of rotations.
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Figure 8.14 WA — the position of the end-effector approaching the grasp

position.
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Figure 8.15 CM - the position of the crimping machine.
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[0 CI: the position of the wire end inserted in the crimp, defined with respect
to the crimp

CI is a frame embedded in the end of the wire, in exactly the same manner as CA4,

except that it represents the wire inserted in the crimp. Thus, CI simply involves a

translation of some insertion distance in the positive direction of the Z-axis of C.

+ N

Z,

XZ Xc

Figure 8.16 C - the position of the crimp.
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Figure 8.17 CA — the position of the wire end approaching the crimp.

In a similar manner to CA, many insertion positions are used such that the
translation distances get successively greater. Thus:

CI = Trans(0,0, z_insert),

where:
z_insert =0,
delta,
2 * delta,

z_insert_final

0 CD: the position of the wire end departed from the crimping machine (the
crimp having been attached), defined with respect to the crimp

In a similar manner to CA, CD is defined as a translation in the negative direction

of the Z-axis of the C frame, except that in this case the translation distance

becomes successively greater. Hence:

CD = Trans (0,0, — (z_depart)),
where:
Z_depart =0,
delta,
2% delta,
z_depart_final

The task specification is now complete and it simply remains to program the robot
by implementing these transform equations. We will accomplish this in terms of a
simple robot programming language described in the next section.
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8.4 A simple robot-programming language

We introduce here a very simple robot-programming language to illustrate how this
manipulator task might be coded. The robot language, RCL, is not intended to be
a fully fledged programming language. It is, rather, intended to facilitate the direct
implementation of the manipulator task specifications, described in the preceding
section, in a structured programming environment. As such, it is intended to
facilitate the representation of coordinate frames and computations on frames, to
provide an elegant and simple interface to robot vision facilities, and to provide
structured programming control constructs. RCL is an interpretative language,
implemented using a simple recursive descent algorithm. The philosophy behind the
specification of the language syntax is that an RCL program should be almost
identical in appearance to the task specification. Thus, both arithmetic and
frame/transform expressions are allowed; a built-in frame data-type is provided and
several predefined functions are provided for the specification of translations
and rotations. The robot vision interface is facilitated by providing two built-in
functions which return, among other things, frames defining the position and
orientation of the required objects. A complete RCL program comprises two parts:
a frame variable definition part and a series of statements. These statements may
be either arithmetic expression statements, frame expression statements, built-in
functional primitives, or structures programming control construct statements.
Since the language components divide naturally into these five distinct sections,
each of these topics will be described and discussed in turn.

[0  Data-types and variable declarations

There are only two data-types in RCL: an integer type and a predefined frames
type. Variables of integer type are declared implicitly when the variable identifier
is used in the program; there is no need (indeed, no facility exists) to declare integer
variables explicitly in the program. However, variables of the frame type must be
explicitly declared at the beginning of the program. Frame variables are
functionally important and this is recognized by the requirement to define them
explicitly. Frame variables are declared in the frame declaration part, introduced by
the keyword FRAME, and by listing all the required frame variables. Since frame
variables have such an important and central function in the program, they are
distinguished by a leading character ” i.e. all frame variables begin with the
character *.

O  Functional primitives

Several built-in functional primitives have been incorporated in RCL. These
functions are broadly concerned with the three categories of system initialization,
robot motion, and visual sensing. The system initialization primitives include the
functions LOAD_ROB which loads the robot parameters from file allowing RCL
to control two different robots, and LOAD CAM which loads the twelve
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coefficients of the camera model (to be discussed in Section 8.6) from file. The robot
motion primitives include the functions GRASP, RELEASE, HOME, DELA Y,
and MOVE. The GRASP and RELEASE functions simply cause the end-effector
gripper to close and open fully; the HOME function causes the robot manipulator
to return to a predefined home position; and the DELAY function causes the robot
program to be suspended for a specified period of time. The MOVE function
accepts the one parameter, a frame expression, and causes the robot manipulator
to move to a particular position and orientation as specified by the 76 frame
definition given by the frame expression parameter. Thus, in typical situations, the
T6 frame is assigned the value of transform/frame equation (as discussed in the
preceding section on task specification) and the appropriate manipulator movement
is effected by passing this 76 variable to the MOVE function.

The visual sensing primitive of interest here is the function WIRE which
provides the interface to the robot vision sub-system, specifically to determine the
position and orientation of a suitable wire for grasping, based on the heuristic
grey-scale image analysis techniques detailed in Section 8.5. It returns two frame
variables corresponding to the frames W and WG of the wire-crimping task
discussed above.

[0 Arithmetic expression statements

This type of statement simply provides the facility to evaluate integer expressions,
involving any or all of the standard multiplication, division, addition, and division
operators (*,/, +, and —, respectively) and to assign the value of this expression
to an integer variable. This expression may be parenthesized and the normal
precedence relations apply. The expression operands may be either integer variables
or integer constant values.

O  Frame expression statements

The frame expression statement type is a central feature of RCL. It allows frame
variables and frame functions to be combined by homogeneous transformation
matrix multiplication, represented in RCL by the infix operator x, and the resultant
value to be assigned to a frame variable. Additionally, frame expressions can be
used directly as parameters in the MOVE function. The syntax of the frame
statement, expressed in Backus—Naur form, is as follows:

<frame_statement> ::= <frame variable>:=<frame expression>
Sframe_expression>::= <frame entity> {x<frame entity>}
<frame entity> <frame_variable> | <frame function>

<frame_function> <inv_function> |

<rotx_function> |

<roty_function> |

<rotz_function> |

|

|

i

<rpy_function>
<trans_function>
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Thus, the frame expression allows the combination of a frame variable and/or any
of the six in-built frame functions. These functions, INV, ROTX, ROTY, ROTZ,
RPY and TRANS, implement transforms corresponding to a homogeneous
transformation inversion, rotation about the x-,y-, and z-axes, manipulator
orientation specification using the standard roll, pitch and yaw convention, and
translation, respectively.

The INV function takes one parameter, a frame expression, and returns
frame value equivalent to the inverse of the frame parameter value.

The ROTX, ROTY, and ROTZ functions take one parameter, an integer
expression representing the values of the rotation in degrees, and return frame value
equivalent to the homogeneous transformation corresponding to this rotation.

‘The RPY function takes three parameters, all integer expressions,
representing the values of the roll, pitch and yaw rotations. Again, it returns frame
value equivalent to the homogeneous transformation corresponding to the
combination of these rotations.

The TRANS function takes three parameters, again all integer expressions,
representing the x-, y-, and z-coordinates to the translation vector. It returns a
frame value equivalent to the homogeneous transformation corresponding to this
translation.

To illustrate the use of the frame expression, consider the first move in the
wire-crimping task. This is represented by a move corresponding to the frame 76,
given by the expression:

T6=Z"'+«O0V+E™!
where:

Z =identity transform
OOV = Trans(150, 300, 150)Rot(x, — 180)
E = Trans(0, —15,209)

Assuming the frames *Té,*Z, 200V, and *E have been declared, this is written
in RCL as:

~Z := TRANS(0,0,0);

AQ0V := TRANS(150,300,150)*ROTX(-180);
~E := TRANS(0,-15,209);

AT6 1= INV(AZ) 00V« INV(*E);

and a move to this position is effected by the statement:

MOVE(AT6);

0 Structured programming control constructs
The structured programming control constructs include a REPEAT-UNTIL
statement, an IF~-THEN-ELSE-ENDIF statement, a FOR statement, and a
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WHILE statement. These statements adhere to the normal functionality of such 5 /« the position of the end~effector »/

structured control constructs. /« out of the field-of-view of the camera «/
Since the syntax and semantics of the RCL language are based on the task

specification methodology described in detail in the preceding section, the i oovx := 150;

implementation of the wire-crimping task becomes a very simple translation oovy :=300;

oovz :=150;
~outofview = TRANS(oovx,o00ovy,oovz) % RPY(0,0,-180);

’

process. This was illustrated in the preceding section by the implementation of the
first move of the task. The remaining moves are equally amenable to translation

and understanding and the final wire-crimping program follows: /% the position of the end-effector over «/

0  An RCL implementation of the wire-crimping task /%« the binof crimped wires */
/*************************************************/ H -
/% o/ wdumpx := Oéo
. . . . dumpy := 550;
/ W :
: RCL Wire Crimping Program For 6R/600 Manipulator :; wdumpz := 160;

Awiredump := TRANS(wdumpx,wdumpy,wdumpz) «
RPY(0,0,-135);

/ LA R R R E R SR EEEEEEEREEEREREEEEEEEREEEEEEEEEEEEERER XX T /

/% Frame Declarations «/
/% the positionof the end-effector «/

FRAME *wire, /« centred over the tray of wires «/
Awiregrasp,
“wireapproach, centrex := 0;
“wiredepart, centrey := 360;
Acrimp, , centrez :=150;
Acrimpapproach, 5 Acentre := TRANS(centrex,centrey,centrez) «
Acrimpdepart, RPY(0,0,-180);
Acrimpcontact,
Acrimpinsert, /% the position of the crimping machine »/
Acrimpmachine,
Awiredump, ; cmx = 150;
Acentre, cmy :=300;
Aoutofview, cmz :=0;
"z, Acrimpmachine := TRANS(cmx,cmy,cmz);
AT6,
reffector; /% the positionof the crimp, ready to be «/
/+« attached; as position defined with »/
/% the position of the manipulator is coincident »/ /%« respect to the crimping machine »/
/%« with the base coordinate reference frame »/ cx :=55;
cy :=55;
AZ := TRANS(0,0,0); cz := 85;
Acrimp := TRANS(cx,cy,cz) « ROTY(90) » ROTZ(180);
/% the end-effector is at the tip of the «/
/% Wwire gripper; apositiondefined with «/ /% the position of the wire-end in contact with «/
/% respect to the end of the manipulator «/ /%« the crimp %/
ey := -=15; Acrimpcontact := TRANS(0,0,0);
ez = 195; .
“effector := TRANS(O,ey,ez); /% the position of the wire—end inserted in the crimp «/
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insertionlength :=5;
Acrimpinsert := TRANS(O,0,insertionlength);

/% load the robot model of the Smart Arms «/
/%« 6R/600 manipulator from file «/

LOAD_ROB;
/x load the components of the camera model from file 4/
LOAD CAM;

/% incremental distances for point-to-point «/
/% approximation to continuous path movement «/

delta :=3;

/% time delay between gross manipulator x/
/% point-to-point movements x/

lLag := 20;

REPEAT

/% move out of the field~of-view of the camera «/
AT6 1= INV(*Z) « "outofview « INV(Aeffector);
MOVE (AT6) ;

DELAY(lag);

/+ determine the position and orientation of the «/
/% wire-end and wire grasping point using vision %/

WIRE(Awire,*wiregrasp);

/% if not error in the robot vision routine «/
/% proceed with the task «/

IF errcode =0
THEN

/% move to a position above the centre of the trays/
AT6 := INV("Z) x “centre « INV(*effector);
MOVE (~T6);

DELAY(lag);
RELEASE;
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/% when grasping, the end-effector is defined &/
/x to be between the jaws of the gripper &/

ey :=5;
~“effector := TRANS(O,ey,ez);

/x move to an approach point above the grasp point %/

approachdistance := 30;

Awireapproach := TRANS(0,0,-approachdistance);
AT6 := INV(*Z) » “wire « "wiregrasp « *wireapproach
* INV (heffector);

MOVE(~T6) ;

DELAY(lag);

/% move to the grasp point through «/
/% successive approach points %/

approachdistance := approachdistance - delta;

REPEAT

Awireapproach := TRANS(0,0,~approachdistance);
AT6 2= INV(AZ) &« *wire « *wiregrasps
“wireapproach « INV(*effector);

MOVE (AT6);

approachdistance := approachdistance - delta;

UNTIL approachdistance <= 0;

/+« move to the final grasp point and grasp the wire %/

AT6 := INV(AZ) % *Wire « *wiregrasp « INV(*effector);
MOVE(AT6) ;
GRASP;

/% move to the depart position through «/
/% successive depart points «/

departdistance :=delta;

REPEAT
Awiredepart := TRANS(0,0,~-departdistance);
AT6 := INV(”Z) « *wire « *wiregrasp » *wiredepart
* INV(~effector);
MOVE(AT6) ;
departdistance := departdistance + delta;
UNTIL departdistance > 30;
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approachdistance := 40;

/+« the end-effector is defined to be at the «/
/%« inside of the upper jaw of the gripper «/
/% now that the wire has been grasped »/

ey := -15;
Aeffector := TRANS(O,ey,ez);

Acrimpapproach := TRANS(0,0,-approachdistance);
/% move to an approach position «/
/% in front of the crimp %/

AT6 1= INV(AZ) %« Acrimpmachine » “crimp «
Acrimpapproach « *wiregrasp » INV(*effector);

MOVE(AT6);

DELAY(lag);

/+« bring the wire into contact with the crimp «/
/% by moving through successive approach points «/

approachdistance := approachdistance —delta;

REPEAT
Acrimpapproach := TRANS(O,0,-approachdistance);
AT6 2= INV(”2Z) « “crimpmachine » “crimp «
Acrimpapproach » “wiregrasp » INV(*effector);
MOVE (AT6) ;
approachdistance := approachdistance - delta;
UNTIL approachdistance <= 0;

/x final contact position «/

AT6 1= INV(”Z) % *crimpmachine » “crimp «
Acrimpcontact « *wiregrasp x INV(*effector);
MOVE (~T6);

/% insert wire incrimp &/

AT6 := INV(2AZ) x “crimpmachine » “crimp «
Acrimpinsert x Awiregrasp » INV(*effector);

MOVE (AT6);

/%« actuate the crimping machine »/
/% «» this isavirtual action » »/

DELAY(lag);
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/« Wwithdraw with the crimped wire «/
/% through successive depart positions «/

departdistance :=delta;

REPEAT

Acrimpdepart : TRANS(D,O,—departdistance);
AT6 = INV(AZ) » “crimpmachine & Acrimp
Acrimpdepart « “wiregrasp « INV(~effector);
MOVE(AT6) ;

departdistance := departdistance + delta;
UNTIL departdistance > 35;

i

/« move to a position above the collection bin */
AT6 1= INV(AZ) « Awiredump « INV(*effector);
MOVE(AT6) ;

DELAY(lag);

RELEASE;

/x return to the position above the «/
/« centre of the tray «/

AT6 := INV(”Z) % “centre « INV(*effector);
MOVE (~T6);

DELAY) Lag);

ENDIF;

/% this is repeated until there are no more wires «/
/% to be crimped; WIRE returns error code 20 %/

UNTIL errcode = 20;

8.5 Two vision algorithms for identifying ends
of wires

8.5.1 A binary vision algorithm

The main problem in this application is to identify the position and orientation of
both a wire end and of a suitable grasp point to allow the robot manipulator to pick
up the wire and insert it in a crimp. If we assume that the wires are well-scattered
and lie no more than one or two deep, then all the requisite information may be
gleaned from the silhouette of the wire and, hence, binary vision techniques can be
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used. In order to facilitate simple image analysis, we threshold the image and thin
the resultant segmented binary image.

The original image is acquired at the conventional 512 X 512 pixel resolution
with eight-bit grey-scale resolution (see Figure 8.18). To ensure fast processing and
analysis, we first reduce the resolution to 128 x 128 pixels (see Figure 8.19) resulting
in a reduction of the complexity of subsequent operations by a factor of sixteen.
This reduction is important as the computational complexity of thinning operations
is significant. There are essentially two ways in which this reduced resolution image
may be generated: by sub-sampling the original image every fourth column and
every fourth line or by evaluating the average of pixel values in a 4 X 4 window. As

Figure 8.18 512 x 512 image.

Figure 8.19 128 x 128 image.
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we saw in Chapter 4, it is desirable to reduce the image noise and, since this can
be accomplished by local averaging, the reduced resolution image in this
implementation is generated by evaluating the local average of a 4 x4 (non-
overlapping) region in the 512 X 512 jmage. This also minimizes the degradation in
image quality (referred to as aliasing) which would result from sub-sampling.

The image is then segmented by thresholding in the manner discussed in
Chapter 4; the threshold value is automatically selected using the approach
associated with the Marr—Hildreth edge detector (see Section 4.1.9). Figure 8.20
shows the binary image generated by thresholding the original grey-scale image at
the automatically determined threshold.

Once the binary image has been generated, the next step is to model the wires
in some simple manner. The skeleton is a suitable representation of electrical wires,
objects which display obvious axial symmetry. In this instance, we use the thinning
technique described in Section 4.2.3; Figure 8.21 illustrates the application of this
thinning algorithm to the binary image shown in Figure 8.20.

Having processed the image, we now proceed to its analysis. There are
essentially two features that need to be extracted from the image:

(a) the position of a point at which the robot end-effector should grasp the wire
and the orientation of this point on that wire;

(b) the position and orientation of the wire end in relation to the point at which
the wire is to be grasped.

The orientations are required because unless the wire is gripped at right-angles to
the tangent at the grasp point, the wire will rotate in compliance with the finger
grasping force. The orientation of the endpoint is important when inserting the wire
in the crimping-press as the wire is introduced along a path coincident with the
tangent to the wire at the endpoint. Based on the skeleton model of the wires, a wire

Figure 8.20 Binary image.
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!

Figure 8.21 Thinned image.

segment may be defined as a subsection of a wire bounded at each end by either
a wire-crossing or by an arc-end (wire segment end). Thus, a wire segment with two
valid endpoints, at least one of which is an arc-end, and with a length greater than
some predefined system tolerance, contains a feasible grasp point. This is a point
some suitable fixed distance (15 mm) from the wire end.

Once the positions of both the grasp-point and the endpoint are known, the
orientations or tangential angles of these two points are estimated. The tangent to
the wire at the grasp-point is assumed to be parallel to the line joining two skeletal
points equally displaced by two pixels on either side of the grasp-point. The tangent
to the wire end is assumed to be parallel to a line joining the endpoint and a skeletal
point three pixels from the end. Both of these tangential angles are estimated using
the world coordinates corresponding to these pixel positions; these world coord-
inates are obtained using the camera model and inverse perspective transformation
to be described in Section 8.6.

A typical selected grasp-point is shown in the thinned image (Figure 8.21) of
the original image of a tray of wires (Figure 8.20).

8.5.2 A grey-scale vision algorithm

If the organization of the wires becomes more complex than assumed in the
preceding section, with many layers of wires occluding both themselves and the
background, the required information can no longer be extracted with binary
imaging techniques. The grey-scale vision system described in this section addresses
these issues and facilitates analysis of poor contrast images. It is organized as two
levels, comprising a peripheral level and a supervisory level. All shape identification
and analysis is based on boundary descriptors built dynamically by the peripheral
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level. The supervisory level is responsible for overall scheduling of activity, shape
description, and shape matching. The use of an area-of-interest operator facilitates
efficient image analysis by confining attention to specific high-interest sub-areas
in the image. Thus, the algorithm described here uses three key ideas: dynamic
boundary following (see Chapter 5); planning based on reduced resolution images,
and a two-level organization based on peripheral and supervisory hierarchical
architecture. These three ideas facilitate efficient analysis and compensate for the
additional computational complexity of grey-scale techniques. The system is based
on 256 X 256 pixel resolution images; the reduced resolution image is generated by
local averaging in every 2 X 2 non-overlapping region in the acquired 512 x 512
image. The choice of resolution was based on a consideration of the smallest
objects that need to be resolved and the minimum resolution required to represent
these objects.

[0  The peripheral level

The peripheral level corresponds to conventional low-level visual processing,
specifically edge detection and the generation of edge and grey-scale information
at several resolutions, and segmentation using boundary detection. The Prewitt
gradient-based edge operator described in Chapter 5 is used as it provides
reasonable edges with minimal computational overhead, especially in comparison
to other edge operators. The edge detector operates on both 256 X 256 and 64 x 64
resolution images. High-resolution edge detection is used for image segmentation
and low-resolution edge detection is used by an area-of-interest operator.

The ability of any edge detector to segment an image depends on the size of
the objects in the image with respect to the spatial resolution of the imaging system.
The system must be capable of explicitly representing the features (edges) that
define the objects, in this case electrical wires. When dealing with long cylinder-like
objects, the constraining object dimension is the cylinder diameter. At least three
pixels are required to represent the wire (across the diameter) unambiguously: one
for each edge and for the wire body. Using wires of diameter 1.0 mm imposes a
minimum spatial resolution of 2 pixels/mm or a resolution of 256 X 256 for a field
of view of 128 x 128 mm. Using a spatial resolution of 1 pixel/mm will tend to
smear the object (given that we are reducing the resolution by local averaging and
not by sub-sampling). Edge detection tests at this resolution showed that such
smearing does not adversely affect the boundary/feature extraction performance if
the wire is isolated (i.e. the background is clearly visible) but in regions of high
occlusion where there are many wires in close proximity to the edge or boundary,
quality does degrade significantly. Tests using a spatial resolution of 0.5 pixels/mm
indicated that a detector’s ability to segment the image reliably is severely impaired
in most situations.

There are several approaches which may be taken to boundary building; this
system uses a dynamic contour following algorithm and is the same one described
in detail in Chapter 5. As the algorithm traces around the boundary, it builds a
boundary chain code (BCC) representation of the contour; see Chapter 7. The
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complete BCC represents the segmented object boundary and is then passed to the
supervisory level for analysis. Figure 8.22 illustrates the boundary following process
at various points along the wire contours. The disadvantage of the contour
following technique is that, because the algorithm operates exclusively on a local
basis using no a priori information, the resulting segmentation may not always
be reliable and the resulting contour may not correspond to the actual object
boundary. In particular, the presence of shading and shadows tends to confuse the
algorithm.

The boundary following algorithm, which effects the object’s segmentation,
is guided by processes at the supervisory level on two distinct bases. Firstly, the
supervisory level defines a sub-section of the entire image to which the boundary
following process is restricted: this sub-area is effectively a region within the image
in which the vision system has high interest. Secondly, the supervisory level supplies
the coordinates of a point at which the boundary following procedure should begin.
This is typically on the boundary of the object to be segmented.

O  The supervisory level
The supervisory phase is concerned with overall scheduling of activity within the
vision system and with the transformation and analysis of the boundaries passed to
it by the peripheral level.

In guiding the peripheral level, its operation is confined to specific areas of
high interest and it is supplied, by the supervisory level, with start coordinates for
the boundary following algorithm. An interest operator was used which identifies

Figure 8.22 Boundary following.
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a sequence of sub-areas within the image, ordered in descending levels of interest.
This operator is based on the analysis of the edge activity in a reduced resolution
image and allows the system to avoid cluttered areas with many (occluding) wires
and concentrate on points of low scene population which are more likely to contain
isolated and accessible wires. The area of interest is one-sixteenth of the size of the
original image and is based on a 4 x 4 division of a 64 x 64 pixel resolution image.

The approach taken to the wire-crimping application is to extract a contour,
representing the boundary of a group of wires, in a specific area of interest in the
image and to analyse this boundary to determine whether or not it contains a
boundary segment describing a wire end. What is required of the supervisory
processes is to ascertain which part of the contour, if any, corresponds to the wire-
end template and subsequently to determine the position and orientation of both
the end of the wire and a suitable grasp-point. As we noted in Chapter 7, the use
of BCC-based shape descriptors to identify shapes is not reliable and, instead, the
wire end is identified by heuristic analysis, formulated as follows.

A boundary segment characterizing a wire end is defined to be a short segment
(20 units in length) in which the boundary direction at one end differs by 180° from
the direction at the other end, and in which the distance between the endpoints is
less than or equal to 5 units. In addition, the wire end should be isolated, i.e. there
should be no neighbouring wires which might foul the robot end-effector when
grasping the wire. This condition is identified by checking that the edge magnitude
in the low-resolution image in a direction normal to the boundary direction is less
than the usual threshold used by the edge detection process. Figure 8.23 illustrates
a wire end extracted from a boundary using this heuristic technique.

8.5.3 The vision|manipulator interface

Once the wire end shape has been identified, it is necessary to determine the
components of the homogeneous transformations representing the two frames, W
and WG, which denote the position and orientation of the wire end and the position
and orientation of the grasp position with respect to the wire end. In the task
specification discussed above, we defined the origin of the wire frame W to be at
the end of the wire, with its Z-axis aligned with the wire’s axis of symmetry,
directed away from the end. The X-axis of W was defined to be normal to the tray
on which the wires lie (and, hence, is normal to image plane) directed vertically
upwards. The Y-axis makes up a right-hand system. The origin of the wire gripper
frame WG was defined to be located on the Z-axis of the W frame, in the negative
Z-direction, and located a short distance from the origin of W. The Z-axis of WG
is defined to be normal to the plane of the tray, directed downwards. The Y-axis
is defined to be normal to the axis symmetry of the wire, in the plane of the tray.
The X-axis makes up a right-hand system. Refer again to Figures 8.11 and 8.12.

We can see that, to determine the components of the frame W, we only need
to identify the position of the end of the wire and orientation of the axis of
symmetry of the wire at its end, which gives us the direction of the Z-axis. The
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Figure 8.23 ldentification of a wire-end (with W frame attached).

Y-axis is at right-angles to it and the X-axis has already been defined. Similarly, we
only need to identify the orientation of the axis of symmetry of the wire at the
grasp-point to determine WG; this gives us the direction of the X-axis; the Y-axis
is at right-angles to it and the Z-axis has already been defined.

The main problem at this stage is that any orientation and position will be
computed in the image frame of reference, i.e. using pixel coordinates. This is not
satisfactory since the robot task specification is formulated in the real-world frame
of reference. Obviously, the relationship between these two reference frames must
be established. Once it is, we can transform the relevant image positions (the end
of the wire and other points on its axis) to the real-world frame of reference and
then compute the required orientations. This relationship is the subject to which we
now turn our attention.

8.6 The camera model and the inverse
perspective transformation

Generally speaking, when we use machine vision to identify the position and
orientation of objects to be manipulated by a robot, we must do so with reference
to real-world coordinates, i.e. in the real-world frame of reference. However, all the
techniques we have dealt with in preceding chapters have been confined to the image
frame of reference; we now need to establish the relationship between this image
coordinate reference frame and the real-world coordinate reference frame.
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For any given optical configuration, there are two aspects to the relationship:
the camera model, which maps a three-dimensional world point to ité
corresponding two-dimensional image point, and the inverse perspective
transformation, which is used to identify the three-dimensional world point(s)
corresponding to a particular two-dimensional image point. Since the imaging
process is a projection (from a three-dimensional world to a two-dimensional
image), the inverse process, i.e. the inverse perspective transformation, cannot
uniquely determine a single world point for a given image point; the inverse
perspective tranformation thus maps a two-dimensional image point into a line (an
infinite set of points) in the three-dimensional world. However, it does so in a useful
and well-constrained manner.

For the following, we will assume that the camera model (and, hence, the
inverse perspective transformation) is linear; this treatment closely follows that of
Ballard and Brown (1982). Details of non-linear models can be found in the
references to camera models in the bibliography at the end of the chapter.

8.6.1 The camera model

Let the image points in question be given by the coordinates

)

which, in homogeneous coordinates, is written

~ < -

Thus:

~ |8

and:
y=2
t

Let the desired camera model, a transformation which maps the three-dimensional
world point to the corresponding two-dimensional image point, be C. Thus:

X
u
C}z)=v
lt
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Hence C must be a 3 x4 (homogeneous) transformation:

Ciu Cn Ciz Cu
C=|Cy Cn Ci Cu
Ci1 Ci Cs3 Cy

and:
X
Ci Ci2 Ciz Cu Y u
Cyy Cr Caz Caa 2 =1
Cis1 C2 Ciz Cx 1 t
Expanding this matrix equation, we get:
Cux+Ciy+Cuiz+Cu=u 6}
Coux+ Cuny+ Caz+ Cu=v )
Caix+ Cuy+ Ciz+ Cu=t (3)
but:
u=Ut
v=Vt
so:
u-Ut=0 (4)
v=-Vt=0 3

Substituting (1) and (3) for u and ¢, respectively, in (4) and substituting (2) and (3)
for v and ¢, respectively, in (5):

Cux+ Cipy+ Ci3z+ Ciy — UC31x — UC3y — UC332 = UC3 =0 (6)
Coix+ Cpy+ Co3z+ Cos — VCiix — VCiy — VCi3z — VCia =0 (7

Remember that these two equations arose from the association of a particular world
point

[ B TR

with a particular and corresponding image point

u
vf.
t

If we establish this association (i.e. if we measure the values of x, y,z, U, and V),
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we will have two equations in which the only unknowns are the twelve camera
model coefficients (which we require). Since a single observation gives rise to two
equations, six observations will produce twelve simultaneous equations which we
can solve for the required camera coefficients C;;. Before we proceed, however, we
need to note that the overall scaling of C is irrelevant due to the homogeneous
formulation and, thus, the value of C3 may be set arbitrarily to 1 and we can
rewrite (6) and (7), completing the equations so that terms for each coefficient of
C are included, as follows:

Cux+Cry+ Ci3sz+ Cu+ G0+ 220
+ C230 + C240 — UC51x — UCs5y ~ UCa3z= U

C110 + C120 + C130 + C140+ Co1x + Crny
+ Co3z+ Cog— VCa1x — VC32y - VCiz=V

This reduces the number of unknowns to eleven. For six observations, we now have
twelve equations and eleven unknowns: i.e. the system of equations is over-
determined. Reformulating the twelve equations in matrix form, we can obtain a
least-square-error solution to the system using the pseudo-inverse method which we
described in Chapter 4.

Let

'xl yl zl 1 0 0 0 0 —=Uly! _Ulyl___Ulzl_‘

0 0 0 0 x' yl zt 1 —vVix! —piy! —pig!

2 2 2 2.2 2.,2 2.2

x>y zc1 0 0 0 0 —-U*x* -U"y -U=z

03 0 0 0 x* y2 22 1 —V3x* —V%y?r %2

3 3 3.3 3.,3 3,3

x>y z21 0 0 00 -Ux" =-Uy -Uxz

X=10 0 00 x*y*z22 1 —Vx -y -ve’

x4tz 1 0 0 0 0 -Ux* Uy —U%*

0 0 0 0 x* y* z¢ 1 —WVx* —viy* -

¥y zZ 1 0 0 00 -UX -U%y -U7Z

0 0 00 x° y° 2% 1 —Vx* —V° —vz°

x$ 35 z51 0 0 0 0 —-USx® —USy® —US®

[0 0 0 0 x5 y° 281 —Vox® —VS° —V%°)
o
Cr2
Cis
Cua
Ca
c=|Ci
Cas
Coa
Csy
Ci2
| C33 ]
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U6

e

where the trailing superscript denotes the observation number.
Then:

c=(X"X)"'XTy
= XTy

We assumed above that we make six observations to establish the relationship
between six sets of image coordinates and six sets of real-world coordinates.®
This is, in fact, the central issue in the derivation of the camera model, that is,
the identification of a set of corresponding control points. There are several
approaches. For example, we could present the imaging system with a calibration
grid, empirically measure the positions of the grid intersections, and identify the
corresponding points in the image, either inactively or automatically. The empirical
measurement of these real-world coordinates will be prone to error and this error
will be manifested in the resultant camera model. It is better practice to get the
robot itself to calibrate the system by fitting it with an end-effector with an
accurately located calibration mark (e.g. a cross-hairs or a surveyor’s mark) and by
programming it to place the mark at a variety of positions in the field of view of
the camera system. The main benefit of this approach is that the two components
of the manipulation environment, the robot and the vision system, both of which
are reasoning about coordinates in the three-dimensional world, are effectively
coupled and, if the vision system ‘sees’ something at a particular location, that is
where the robot manipulator will go.

8.6.2 The inverse perspective transformation

Once the camera model C has been determined, we are now in a position to
determine an expression for the coordinates of a point in the real world in terms
of the coordinates of its imaged position.

* o . . . . . .
In general, it is better to overdetermine the system of equations significantly by generating a larger set
of observations than the minimal six.
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Recalling equations (1)—(5):

Cix+Cpy+Ciz+Cu=u=Ut
Coux+Coy+ Cuz+Cu=v="Vt
Cix+ Cy + Cyz+ Cay =t

Substituting the expression for # into the first two equations gives:

U(Csix+ Csoy + Ca3z + C34Crix) = Crix + Ciay+ Ci3z2+ Cia
V(Cs1x + Cs2y + C33z2 + C34Cr1x) = Corx + Coay + Casz + Coy
Hence:

(C11 — UC31)x + (C12 — UC32)y + (C13— UC33)z + (Cra — UC34) = 0
(Co1 = VC31)x + (Coz — VC32)y + (Caa — VCi33)z+ (Cas — VC34) =0

Letting:
a1 =C11 — UCs;
b1 =Cin— UCs,
c1=C13— UCss
di=Ci4— UCs
and:
@ = Co1 — VCsy
by =Ca— VC s
2= Ca3— V(i3
dy=Cry— VCss
we have:

ax+biy+caz+di=0
a2x+b2y+cZz+dz=0

These two equations are, in effect, equations of two planes; the intersection of these
planes determines a line comprising the set of real-world points which project onto

the image point
U
vl

Solving these plane equations simultaneously (in terms of z):

Y= z(bicz — bac1) + (bidz — badh)
- (d1bz ~a2b1)

_ (@201 — a12) + (@2 d1 ~ a1dz)
7 (a1by — a2b)

Thus, for any given zo, U, and V, we may determine the corresponding Xo and yo,
i.e the real-world coordinates.
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8.6.3 Recovery of the third dimension

The camera model and the inverse perspective transformation which we have just
discussed allow us to compute the x- and y- real-world coordinates corresponding
to a given position in the image. However, we must assume that the z-coordinate,
i.e. the distance from the camera, is known. For the wire-crimping application in
which the wires lie on a table at a given and constant height (i.e. at a given z), this
is quite adequate. In general, however, we will not know the coordinate of the
object in the third dimension and we must recover it somehow. As we have already
noted, a significant part of computer vision is concerned with exactly this problem
and three techniques for determining depth information will be discussed: one in
the next section of this chapter and two in Chapter 9. The purpose of this section
is to show how we can compute zo if we have a second image of the scene, taken
from another viewpoint, and if we know the image coordinates of the point of
interest (e.g. the wire end) in this image also.

In this instance, we have two camera models and, hence, two inverse per-
spective transformations. Instead of solving two plane equations simultaneously,
we solve four plane equations. In particular, we have:

ax+biy+cz+di=0
mx+bhy+cz+d=0
pix+qiy+rz+si=0
DX+ @y +rz+5=0

where

a1 = C111 - U1C131
by =Cly; — UlCls,
C1 = C113 - U1C133
di =Clyy ~ UlCla,
pr=C2;; — U2C23;
g1 = C212 — U2C232
r = C213 - (/20233
§1=C214 = U2C234

and Cl; and C2;; are the coefficients of the camera model for the first and second
images respectively. Similarly, U1, V1 and U2, V2 are the coordinates of the point
of interest in the first and second images respectively. Since we now have four
equations and three unknowns, the system is overdetermined and we compute a
least-square-error solution using the pseudo-inverse technique discussed in
Chapter 4.

It should be noted that the key here is not so much the mathematics which
allow us to compute xo, ¥o, and zp but, rather, the image analysis by which we
identify the corresponding point of interest in the two images. It is this
correspondence problem which lies at the heart of most of the difficulties in
recovery of depth information. To complete the chapter, the next section describes

a2=C121 - V1C131
b2 = Cla — VICl3,
(.'2=C123— VIC'133
d2= C124" V1C134
D= C231 — V2C23,
q2= C22 — V2C23;
12 = C223 — V2C233
§2=C224 — V2C234
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a simple, popular, and useful technique for analysing images and computing depth
information.

8.7 Three-dimensional vision using structured
light

Active ranging using structured light is one of the most popular ranging techniques
in industrial vision. The essential idea is to illuminate the object in such a way so
that

(a) we know the position and direction of the source of illumination;

(b) the point being illuminated is easily identifiable (e.g. we illuminate a very
small part of the surface of the object with a dot of light);

() we know the position of the sensor (camera) and can compute the direction
to the illuminated part of the object surface.

Thus, we can draw two lines, one along the ray of illumination from the light source
to the object surface and the other from the position of the sensed illumination on
the image through the focal point to the object surface. The object surface is at
the intersection of these two lines (see Figure 8.24) and to compute the three-
dimensional position of this point on the surface of the object, we just have to
compute the point of intersection of these two lines.

The basis of the approach is that it solves, in a simple but contrived way, the
correspondence problem to which we alluded in the preceding section. The solution
is not without problems, however. Since the approach will yield the range to only
one small point on the object’s surface, we either have to scan the surface with the
dot of light, computing the range at each point, or illuminate more than one point

Object

Light ra
Reflected d Y
light ray

Focal point Known

attitude
image

Point source
of iHumination

Image of illuminated point

Figure 8.24 Active triangulation.
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at the same time. The former approach is not normally employed, except in
specialized laser-scanning applications, since one would have a significant overhead
in image acquisition; the latter approach popularly utilizes stripes of light (and is
hence referred to as light striping) or grids of light to illuminate the object. In these
cases, the derivation of range involves the computation of the point of intersection
of the plane of light and the line from an image point on the sensed line through
the focal point (see Figures 8.25 and 8.26).

If we calibrate the vision system and determine the camera model, then, for
any point in the image, we can derive the equation of a single line in the real world.
To identify the coordinates of the single point which reflected light causing the
imaged point, we need an additional constraint. One such constraint might be the
knowledge that the real-world point lies on some plane (which is not coincident with
the line of sight). For example, in Section 8.6 where we derived the inverse
perspective transformation, we assumed that the point lay on the plane given by
z = 2o. In the case of light striping, use the same idea and illuminate the object with
a single plane of light and, if we know the equation of this plane, then the
identification of the three-dimensional world point coordinates simply requires the
computation of the intersection of the line of sight (given by the inverse perspective
transformation) and this plane. In order to determine the equation of the light
plane, one can locate several points on it, identify their three-dimensional
coordinates and fit a plane through these points. One simple way of identifying
points in the plane of light is to place blocks of different known heights on the work
surface in the path of the light beam. Knowing the real z-coordinate, the real-world
x- and y-coordinates of points on the resulting stripe are then computed by imaging
the stripe and applying the inverse perspective transformation of the camera to the
measured points.

Having identified a number (M, say) of points on the plane at several different
heights, one can use these x, y, and z values to generate a set of simultaneous plane

Object

Reflected

light stripe Plane source

of illumination

Focal point
Image

Figure 8.25 Light striping.
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Three-dimensional object

——

Structured light Obiject reflecting Imaged light pattern
pattern light pattern (viewed from an
oblique angle)

Figure 8.26 ‘Structured light'.

equations:
aXi+ayitaszi+a=0, i=1...M

and solve them using the pseudo-inverse method. Unfortunately, this equation has
a degenerate solution in which all the coefficients are zero. To avoid this possibility,
we can reformulate (1) (from Bolles et al., 1981) by dividing across by az and
letting:

2op

as

2 _p,

as

% _ p,

a3
Thus:

bixi+byyi+zi+bi=0

and hence:

bixi+ bayi+ b=z
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A least-square-error solution to this set of equations, written in matrix form as:

X1 y1 1 4t

X2 Y2 1 b —22

X3 V3 1| *%{b| = — 23 M>3
: b3 :

XM YMm 1 —2IM

can now be generated using the pseudo-inverse method.
The only restriction in this case is that the plane of light cannot be normal to
the Z-axis since an equation of this form cannot be used to represent such a plane

(i.e. Z cannot be constant).
The equation of the plane of light is thus:

bixi+byyi+zi+b3=0

and the three-dimensional position of a point in an imaged light stripe can be found
by solving the set of simultaneous equations given by the two plane equations

Camera @

Plane of
light

lluminated stripe

Camera @

Plane of
light

Deflection d 45°
..-.—.-’ }

| - |

\ Height #

Figure 8.27 Height measurement using light stripes.
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provided by the inverse perspective transformation:

x(c1n — ucst) + y(ci2 — ucs2) + z(C13 — UCs3) = Ucss — c14
X(C21 = ves1) + y(cz2 — ve32) + 2(Ca3 — UC33) = VC3s — Coa

and the light plane:
bix+by+z=—by

The plane of light can be generated either using a laser scanner or it can be
generated by projecting a collimated light source through a slit. The advantage of
using a laser is that it can illuminate the object in the presence of ambient lighting,
e.g. by using an infra-red laser and an infra-red sensitive sensor (CCD sensor),
while the slit projection approach will typically require a somewhat darkened
environment or an extremely bright light source. Furthermore, this approach
suffers from a problem common to all so-called triangulation systems of this type:
that only surface points which are visible from both illumination source and sensor
can be used to yield range measurements. Hence, hidden parts in concavities will
cause some problems.

As a final note, it is worth remarking that this structured light approach is
quite general in the sense that it allows you to generate all three real-world
coordinates for points on an imaged light stripe. If you are only interested in
deriving the height of the object rather than its range, then you can adopt a simpler
approach. Consider a plane of light which is incident to the work surface at an
angle of 45° (see Figure 8.27). An object on the work surface in the path of the
beam will cause the illuminated stripe to be deflected by an amount which is
proportional to the height of the block. In fact, for the example shown, the
deflection will be equivalent to the height of the block (in an image frame of
reference). Thus, to measure the height you merely need to calibrate the system by
computing the relationship between a deflection d and a height 4 in the real world
(using a block of known height) and subsequently measure deflections.

Exercises

1. Describe the use of transform equations in robot task specification,
illustrating your answer with at least one example.

2. What is meant by the camera model and the inverse perspective
transformation? How do these transformations relate to the transform
equations used in the robot task specification?

3. Cylindrical steel ingots, held in a clamp after they have been cut from
a bar, require chamfering (i.e. trimming the edge of the cut) to
minimize the possibility of jamming when they are introduced into a
cast. This can be accomplished by a robot with a high-speed rotating
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grinding wheel mounted on the end effector. Identify a sequence of
end-effector movements which will effect this chamfering task and
generate a complete task specification by:
(iy identifying the appropriate coordinate frames for each distinct
object/end-effector position;
(ii) specifying the task transform equations; and
(iii) solving the task transform equations to achieve an explicit
sequence of movements for the end effector.
Each coordinate frame specified in (i) above should be explicitly
defined and you should use figures where appropriate.
How would you exploit CAD (computer aided design) information
regarding the clamp position and the ingot diameter?

4. In some industrial quality control tasks, the objects to be checked and
assured are three-dimensional and all the visible surfaces must be
viewed and inspected. In what circumstances would it be useful to
deploy an articulated robot-mounted camera system rather than
several distinct cameras?

Using homogeneous transformations and task transform
equations to specify object position and orientation, describe with the
aid of diagrams how one would configure a robot program to inspect
all five visible faces of a cubic object using a camera mounted on the
end effector of the robot.
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9

Introduction to image
understanding

9.1 Representations and information processing:
from images to object models

This book began by borrowing a phrase from David Marr and defining computer
vision as the endeavour to ‘say what is where in the world by looking’ by the
automatic processing and analysis of images by computer. We immediately
distinguished between industrial machine vision and image understanding,
identifying the former as the heavily engineered pragmatic application of a small
sub-set of the broad spectrum of imaging techniques in quite restricted, and often
two-dimensional, domains. Image understanding, on the other hand, addresses
general three-dimensional environments where one lifts the restrictions on the
possible organization of the visual domain. Thus, image understanding must take
into consideration the considerable loss of information which arises when a three-
dimensional world is imaged and represented by two-dimensional digital images. In
particular, it must address the recovery of range or depth information. We noted
that a considerable amount of effort is expended in accomplishing this. Again,
approaches which are associated with image understanding endeavour to avoid
intrusive sensing techniques, i.e. imaging systems which depend on the transmission
of appropriate signals (infra-red, laser, or ultrasonic beams; or grids of structured
light) to facilitate the process. Instead, a more passive approach is adopted, using
whatever ambient information exists, in an anthropomorphic manner.

There is, however, more to image understanding than just the recovery of
depth information. If we are going to be able to identify the structure of the
environment, we need to do more than develop a three-dimensional range map since
this is still an image and the information which we need is still implicit. We require
an explicit representation of the structure of the world we are imaging. Hence, we
still need the process of segmentation and object recognition that we dealt with in
the preceding chapters. Our difficulty is that now the data we are dealing with is
much more complex than before and the simplistic image segmentation, template
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