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1 Introduction

The issue being considered in this deliverable is how contextual knowledge could be used to fo-
cus attention and processing. This focussing gives the advantages of: a) more efficient processing
by reducing the number of targets and hypotheses considered and b) more correct processing by
reducing the potential for erroneous targets and hypotheses.

Two processes were investigated and are reported here:

1. Model Selection: When recognising behaviour, there are up to 10 different models that
can be applied to each of as many as 10 different targets in each video sequence frame. It is
possible to exhaustively try each model for each target. But it is also possible to prioritise
the models for each target. Then, the recognition process can work through the priority list
for as long as it has resources.
Section 2 describes a process that uses a Bayes’ network to integrate information from 4
sources: behaviour importance priorities, incompatibility between model and data, pre-
vious frame results and scene position. The resulting process ranks the true model (as
defined in the ground truth) in average position 1.2, where ranks positions are defined as
1, 2, ... N if N models are possible.

2. Tracked Target Focussing: When applying a change-based target detector, the question is
where to apply this process. Processing the full image should find all targets, but is much
slower and might also allow more spurious targets arising from noise (which can occur
anywhere in the image as well as in the detection zones).
Section 3 presents experiments with an entry detection zone scheme, which exploits a
priori scene knowledge that lets us know where targets are likely to appear from. Targets
that somehow appear in the middle of the scene would then not be detected, but this is
rather unlikely. The experiments consider: where to place detection zones (systematically
instead of randomly) and how often to check them (about once every 4 frames) before the
true and false detection rates are significantly affected. Initial experiments also suggest
that the detection strategy can be learned.

These two techniques show promise for the future, but were not implemented in the demon-
strator, because there we did not consider execution rate issues.

2 Model Selection

The current filtering module for the Caviar project is based on a Bayesian Model Network. The
module generates two output values for every object on the scene: a hypotheses list and a weight
value (Interestingness evaluation). The Bayesian network output is an XML file that contains
a list with all the possible hypotheses for every object on the scene and their associated weight
(according to their interestingness).

Since the purpose of the model is to serve as a filter for the Context Generator Module, the
final output of the module should be a prioritised list of pairs (person, hypothesis). The priority
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Figure 1: Bayesian Network for the priority list

list is defined as a descending order list of pairs (person, hypothesis). The value that determines
the sorting order is the product of the associated weight for the person and the hypothesis proba-
bility. According to the current XML Schema the list is created by the module that receives the
XML output file from the filtering module. An example of the current output for the module is
depicted below:
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<dataset name=“”>

<frame number=“0”>

<objectlist>

<object id=“2”>

<orientation>174.000000</orientation>

<box x=“89.000000” y=“202.000000” w=“40.000000” h=“16.000000” />

<appearance>visible</appearance>

<hypothesislist>

<hypothesis id=“0” prev=“0” evaluation=“0.307692”>

<context evaluation=“1.000000”>browsing</context>

</hypothesis>

<hypothesis id=“1” prev=“0” evaluation=“0.153846”>

<context evaluation=“1.000000”>drop down</context>

</hypothesis>

<hypothesis id=“2” prev=“0” evaluation=“0.153846”>

<context evaluation=“1.000000”>windowshop</context>

</hypothesis>

<hypothesis id=“3” prev=“0” evaluation=“0.076923”>

<context evaluation=“1.000000”>walking</context>

</hypothesis>

<hypothesis id=“4” prev=“0” evaluation=“0.076923”>

<context evaluation=“1.000000”>shop enter</context>

</hypothesis>

<hypothesis id=“5” prev=“0” evaluation=“0.076923”>

<context evaluation=“1.000000”>shop exit</context>

</hypothesis>

<hypothesis id=“6” prev=“0” evaluation=“0.076923”>

<context evaluation=“1.000000”>shop reenter</context>

</hypothesis>

<hypothesis id=“7” prev=“0” evaluation=“0.076923”>

<context evaluation=“1.000000”>immobile</context>

</hypothesis>

</hypothesislist>

<featurelist>

<weight>1.500000</weight>

</featurelist>

</object>

</objectlist>

</frame>

</dataset>
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2.1 Context Evaluation

The filter module produces a hypotheses list that contains all the possible hypothesis. The
probability of a context for an object in the current scene is evaluated based on three factors:

1: The movement and role for the past n frames.

2: The position of the person in the current scene

3: The hypotheses inferred by the Hypotheses generator in the previous frame.

These three factors are combined using a Bayesian network approach. The formula used to
determine the probability of a hypothesis for the current object is:
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Where:
C = the set of possible contexts for the current object. For a person object the current set is:
C = {walking, shop reenter, shop enter, shop exit, window shop, immobile, browsing, drop

down}
For a group of persons object the current set is:
C = {walking, shop reenter, shop enter, shop exit, window shop, browsing, meeting, fighting}
ct
i = the ith context from the context set at frame t.

M = the movement value of the individual
R = the role value of the individual.
post = the position of the individual in the current frame.
N = the total number of contexts.
The hypothesis probabilities are normalized, according to the current CAVIAR Inference

Modules.

2.1.1 Hypothesis inference from past frame Hypotheses.

The conditional probability for a hypothesis in the current frame based on the hypotheses inferred
by the Hypotheses Generator Module (David Tweed’s Module) is determined as:
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and P1 is a parameter defined by the user. Large values of P1 diminish the effect of the
previous contexts on the priority list, while small values of P1 increase the effect of the previ-
ous context on the list. P
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is obtained from the probabilistic recogniser (David Tweed’s
module).

2.1.2 Hypothesis inference from the position in the scene

Currently there are three locations for the sequences, the first one is a lobby in an office in France,
the other two scenarios are in a commercial shopping centre in Portugal.

In the first scenario there are four zones that have been identified as browsing areas (Figure
2). In the Portugal scenarios there are some zones that have been identified as entrances to the
shops (Figure 3 and 4).

Browsing areas are associated with contexts that contain a browsing situation in their defi-
nition according to the current CAVIAR model. In the current implementation for an individual
czones={browsing}, for a group czones={browsing}.

Entrance areas are associated with contexts that contain shopping situations in their defini-
tion according to the current CAVIAR model. In the current implementation for an individual
czones={shop enter, shop exit, shop reenter, window shop}, for a group czones={shop enter, shop
exit, shop reenter, window shop}.

Outside of these zones the probability for all the hypotheses of an object will be equal
czones = c since the set of zone contexts contains the complete set of contexts.
The probability of a hypothesis given the current position of the object is:
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Pzone = wzone/wtotal

Pout zone = wout zone/wtotal

wtotal = n(czones) ∗ wzone + (N − n(czones)) ∗ wout zone

Where:
n(czones): Total of suitable contexts for the current area according to the object position.
N : Total number of contexts in the current context set.
wzone: Weight for hypotheses contained in the current czones set.
wout zone: Weight for hypotheses not contained in the current czones set.
wzone and wout zone are user defined variables. Currently wout zone = 1 and wzone is a param-

eter defined by the user.
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Figure 2: Browsing Areas for France Scenario

2.1.3 Hypothesis inference from roles and movement in previous frames.

The conditional probability for a hypothesis is inferred for an object based on roles and move-
ments inferred by the CAVIAR inference module from the last f frames. In each past frame a
variable number of hypotheses are generated for an object. The hypotheses contain the move-
ment and sometimes contain the role. The formula to determined the probability is:
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Figure 3: Entrance to Shop Areas for Portugal shopping centre (corridor view)

P
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)

: Probability for context iat time t given the movement mk and role rk at
time j.

H: Total number of hypotheses at the current frame.
cj
i ⊂ (mk, rk): context i contains a situation for the movement and role k according to the

current CAVIAR context definition.
P2: user defined variable. Determines a minimum value for those contexts that are not con-

tained at all in any of the for the H hypotheses.

2.2 Weight Evaluation

The weight tag in the current XML Schema is related to the interestingness of the behaviour of
an object. The interest ness for an object is based on:

1: The number of frames in the recent past that a person appears in the scene.
2: The interestingness of the movement in the current frame (user defined).
3: The interestingness of the context in the past frame (user defined).
According to the definition of these factors, a person that has been previously observed in the

scene is more interesting than a person that just appeared. The interestingness of a movement is
related to their activity level: persons moving exhibit more interesting behaviours than persons
that remain immobile on the scene. The current descending order interestingness list is:

The interestingness of the contexts is related to security and commercial issues. Fighting
contexts and contexts related to shopping activities are more interesting than persons remaining
immobile in the scene. The current descending order interestingness list is:
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Figure 4: Entrance to Shop Areas for Portugal shopping centre (corridor view)

Person Group
Running Movement
Walking Active
Active Inactive

Inactive

The interestingness value for contexts and movement is based on their position on the list as
follows:

interestx = 1 + scalex ∗ (Nx − posx) x ∈ {movement, context}

Where Nx is the total of elements in x , posis the position of x in the list, and scale is a user
defined variable. The weight value for an object is computed by first computing the product of
the factors:

weight pos = No Scenes ∗ interestmovement ∗ interestcontext

Where No Scenesis the number of scenes that the object has appeared in the recent past. Once
Weight pos is calculated for each object in the frame the objects are sorted out in descending
order. Since Weight pos is a value that is not normalized it’s not sensible to use it as the weight
for the object; instead the position of the object in the descending list (based on Weight pos)
determines the final weight for an object, as follows:

weight = 1 + scaleweight ∗ (Nobjects − pos)
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Person Group
drop down fighting
browsing meeting
immobile browsing

window shop window shop
shop exit shop exit

shop enter shop enter
shop reenter shop reenter

walking walking

Where:
scaleweight: User defined variable to determine the relative importance of a person.
Nobjects: Total number of objects in the current frame.
pos : Position in the descending order list according to the value Weight pos.
The probability of the contexts for an object and their weight are determined in separate

processes. The value that determines the position for a pair (object,hypothesis) in the priority
list is the product of the hypothesis probability and the weight of the object. The priority list is a
descending order list.

2.3 Results

The goal of the filter is to minimize the time spent doing further analysis on the subsequent
modules on false hypotheses. The filter produces a list where the most likely pairs (object,
hypothesis) will be first analysed.

The evaluation of the module is based on an evaluation score. This is defined as the number
of incorrect hypotheses analysed before the last correct hypothesis is analysed divided by the
total number of objects in the current scene; ideally the evaluation value its zero. We also define
a local evaluation score as the main position of each hypothesis amongst all hypotheses for each
target. For example for the frame:

1 (object ID =1, hypothesis= walking) correct hypothesis
2 (object ID =1, hypothesis= immobile) false hypothesis
3 (object ID = 2, hypothesis= shop enter) false hypothesis
4 (object ID = 2, hypothesis= shop exit) true hypothesis
The evaluation for the frame its Eval=2/2=1.
The filtering module has only been tested for the ground truth labelled data. The filter has

some variables defined as user defined. These variables have been tuned using a Monte Carlo
Method. 8 sequences were used to train the algorithm and 4 were used for testing purposes. The
algorithm was running using 40 elements per generation. The total of generations was 100. The
initial value for each parameter and their ranges are illustrated in Table 1.

The new generation elements are created from the previous generation elements. Elements
with best scores (smaller values) are more likely to be selected (according to a Bayesian distri-
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Parameter Initial Value Range
Past Frames Analysed 5 4
P1 (Hypotheses inference from past frame Hypotheses) 0.6 0.4
Wzone (Hypotheses inference from the position on the scene) 2.5 1.0
P2 (Hypotheses inference from roles and movement on previous frames) 0.5 0.4
Scalecontext 0.4 0.5
Scalemovement 0.4 0.5
Scaleweight 0.4 0.5

Table 1: Initial values for the Markovian algorithm

bution based on the scores). The best score obtained in the test was 0.1942 (local score 0.088),
and the parameters for the evaluation are illustrated in Table 2.

Past Frames Analysed 5
P1 (Hypotheses inference from past frame Hypotheses) 0.2
Wzone (Hypotheses inference from the position on the scene) 2.0
P2 (Hypotheses inference from roles and movement on previous frames) 0.4
Scalecontext 0.2
Scalemovement 0.2
Scaleweight 0.1

Table 2: Parameters for the best score

The worst score on the tests was 2.42 (local score 1.34) and the worst possible score its 7
(worst possible local score 7).

Although the value is very close to zero the tests were conducted only using ground truth
labelled data for the previous context module (due to unavailability of the probabilistic module
data). It is expected that once probabilistic information is used the scores will drop off a bit.

In order to assess the effect of the previous context module using the ground truth labelled
data this module was removed from the Bayesian network and the scores obtained were 2.12
(local score 1.22). This verifies that the previous context has a strong effect in the performance
of the filter; we expect that once the probabilistic module data is available the score for the tuned
parameters will be in range 0.5-1.5.

3 Target Detection Prioritization

3.1 The components of the tracking system

The tracking system is composed of a central supervisor that calls subsequently the video demon,
the robust tracking module and the target detection module (Figure 5). The supervisor manages
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Figure 5: Architecture of the tracking and detection system controlled by a supervisor.

the data flow between the modules. The detection module detects new targets that are added
to the target list. The tracking module provides robust tracking of the current targets using a
Kalman filter. The supervisor stores the bounding boxes and orientation of the targets of each
frame in a XML file using the CVML format [3].

The detection module uses a simple adaptive background differencing algorithm. We com-
pared a number of background differencing algorithms in the joint article [2]. According to this
study, the simple adaptive background differencing provides good results when it is combined
with the tracking module. The current implementation of the target detection module uses a de-
tection zones. These are rectangular regions within the image. The idea of using detection zones
is to process only those regions where targets may appear. Typically, the surface of those regions
is only a fraction of the surface of the image, which allows the detection to run faster.

We make the assumption that the scene is empty at the beginning of the sequence, and that
new targets can enter only at predefined entry zones. The detection regions are placed such that
they correspond to the physical entry zones in the scene. Under the condition that no targets
appear elsewhere, this algorithm detects all targets reliably, detects less false targets, and can be
computed much faster.

Naturally, the choice of the detection zones must be performed carefully, because the result of
the detector depends on the choice of the detection zones. If targets appear at positions without a
detection zone, they will not be detected. If a detection zone is placed within a zone of frequent
lighting changes, those changes will produce false targets. In the default application the detection
zones are determined manually. In the experiments, we compare several detection zone selection
strategies with respect to computation time, detection rate and false alarm rate. The experiments
give insight in the sensitivity of the tracking system to different strategies for the selection of
detection zones.

3.2 Strategies for the selection of detection zones

There are several strategies to select detection zones for the detection module of the tracking
system. The first strategy (All) consists in selecting all manually defined zones and process them
at every frame. This is the default behaviour of the system and will serve as benchmark in the
experiments (referred to as 5/1, (5 zones per 1 frame) or full)
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The second strategy (Partial) consists in selecting a subset of the manually defined detection
zones at each frame. This subset can be selected at random or in a predefined order. This strat-
egy should increase the processing speed and decrease slightly the number of detected targets,
because some targets are detected a few frames later.

The third strategy (Random) consists in selecting at random a small subzone within the man-
ually defined detection zones. The size of the subzone is chosen such that a target can be covered
entirely. In the experiments we vary the number of selected subzones per frame.

The above strategies require the manual definition of the initial detection zones. To reduce
the amount of manually defined data, we propose the following strategies that are fully automatic
and require no a priori knowledge.

The fully automatic detection zone selection strategy (Automatic) selects random detection
zones within the image. The size is fixed to 21 pixels squared. If the number of detection
zones is sufficiently high, the probability of detecting all targets within the image is high. The
experiments demonstrate this on an example. Naturally, successful detection requires a higher
number of detection zones as the strategy Random, that uses the a priori knowledge of where
targets may appear.

This fully automatic method can be used to learn automatically the entry zones of a new
scene. In the last experiment (Learned), the fully automatic method is combined with a feedback
loop, that stores those random detection zones, that gave rise to a target. Ideally, these zones
should coincide with the manually defined entry zones. The Learned selection strategy uses the
learned detection zones and selects a subset at random from this list.

3.3 Experiment

The goal of this experiment is to study the effect of different selection strategies for the detection
zones of the INRIA tracking system.

We evaluate the performance of the different selection strategies on the sequence
“Meet Split 3rdguy.mpeg” of the CAVIAR entry hall scenario. We chose this sequence, be-
cause of its relatively high complexity and the fact that 3 people enter at different entry zones.
We are aware that testing this approach on only one sequence is too little experimental validation.
Nevertheless, this gives a first insight on how the selection strategies perform.

The experiments are evaluated by comparing the annotated ground truth and the output of the
XML writer of the tracking system. We compute for each frame the k pairs (true box, observed
box) with highest overlap. We keep the pairs that have an overlap of more than 50%. The overlap
is computed by

O(Atrue, Aobs) =
Atrue ∩ Aobs

Atrue ∪ Aobs

(1)

A pair is counted as correct (true positive) if O(Atrue, Aobs) < T = 50%. Any unmatched box of
the ground truth is counted as a missed (false negative). Any unmatched box of the observation
is counted as an insertion (false positive). From these values we compute the Tracker detection
rate (TRDR) and the False alarm rate (FAR). These are measures that were previously defined
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Figure 6: Performance of the detection and tracking system when only a subset of detection zones is
processed.

by Black, Ellis and Rosin in [1] for the evaluation of tracking system performance.

TRDR =
truepos

truepos + falseneg
, FAR =

falsepos

truepos + falsepos
(2)

The first experiment applies the strategy Partial where the manually defined detection zones
are selected in a predefined order. The benchmark of the experiment is given by the run (5/1) that
processes all 5 manually defined detection zones at every frame. We then reduce the number of
processed detection zones per frame. We tested 1 zone per frame, 1 zone every two frames, to 1
zone every 32 frame. Figure 6 and Table 3 show the results.

The TRDR decreases with the number of detection zones. We have very good TRDR up
to testing 1 zone every 4 frames. This means that every entry zone is processed once every 20
frames. The FAR increases little when the number of tested zones is reduced and decreases when
we test less than 1 zone every 8 frames. The overall processing frequency increases from 77.8
Hz of the benchmark to 82.0 Hz of 1 zone every 4 frames to 82.9 Hz at 1 zone every 24 frames.

Targets move at a predefined maximum speed. In the sequence, this speed is rather small
(about 200 pixels/s ≈ 6.7 pixels/frame). At this speed, a target takes an average of 4.5 frames to
traverse a detection zone with width of 30 pixels. This explains the fact, that we catch all targets
when testing one detection zone every 4 frames.

The second experiment evaluates the strategy Random. We generate a large list of overlap-
ping subzones within the manually defined detection zones. The width is set to 21 pixels, and
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Method Frequency [Hz] TRDR [%] FAR [%]
5/1 77.8 48.0 50.1
1/1 81.1 47.7 50.1
1/2 78.6 47.7 50.1
1/4 82.0 46.6 50.8
1/8 81.7 42.8 44.0
1/12 82.8 42.8 44.0
1/16 86.2 37.8 45.5
1/24 82.9 42.8 44.0

Table 3: Performance of the detection and tracking system when only a subset of detection zones is
processed.

Method Frequency [Hz] TRDR [%] FAR [%]
full 77.8 48.0 50.1
20/1 48.5 47.8 43.4
15/1 50.2 47.9 43.4
10/1 52.0 47.7 43.5
5/1 53.1 47.5 43.5
4/1 54.2 47.6 43.5
3/1 53.7 47.5 43.6
2/1 54.3 47.4 43.7
1/1 54.9 44.2 44.8

Table 4: Performance of the detection and tracking system with randomly selected subzones within the
detection zones.

the height equals the height of the original detection zone (between 20 and 30 pixels depending
on the zone). The centers between two neighboring subzones is two pixels. From the 5 detection
zones we obtain 116 subzones. The experiment draws randomly k subzones from this list and
processes them. The TRDR and the FAR is displayed in Figure 7 and in Table 4. The results
are the mean values of 5 runs. We observe little variance between the runs (example 5 zones per
frame: truepos ∈ [822, 827], σ(truepos) = 1.6, falsepos ∈ [635, 637], σ(falsepos) = 0.6).

The TRDR stays constant up to testing only 2 subzones per frame. It drops from 48.0% to
44.2% when testing only 1 subzone per frame. The surprising result is that the random method
has a smaller FAR. This may be interpreted that the subzones are less sensitive to false detections.
This result needs to be confirmed with a larger experiment. The function that allows to draw at
random from a list of elements seems to generate an overhead. Whereas we process a smaller
total surface of detection zones, the computation time is higher than in the previous experiment.
We have implemented the experiment straight forward. Optimization may cause a speed up.

The third experiment evaluates the performance of detection and tracking system when de-
tection zones are chosen randomly all over the image. The detection zones have a fixed size 21
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Figure 7: Performance of the detection and tracking system with randomly selected subzones within the
detection zones.

pixels squared. We generate a list of equally space detection zones with distance of 5 pixels all
over the image. This gives a total of 55 × 74 = 4070 zones. We draw at random k detection
zones from this list and process them. The results are shown in Figure 8 and Table 5. The values
are averaged over 3 runs. The TRDR is significantly inferior to the benchmark. We observe also
a much higher FAR. The best result is obtained using 10 zones per frame (TRDR=33.6% and
FAR=72.2%). Using a higher number of zones may increase the TRDR, but would also increase
the FAR. A reason for the high FAR may be that there are persons in the scene at the beginning
of the sequence. These persons are nearly immobile, and are therefore not labelled in the ground
truth. The small movements of those persons may cause some of the false positives. The pro-
cessing time is not reduced. There is a certain overhead for the random selection from the list of
subzones. This method has still the advantage, that it does not require the manual definition of
the detection zones. This method is fully automatic.

The fourth experiment shows how the Automatic strategy can be used for learning the entry
zones. The experiment is then performed by drawing at random from the learned entry zones.
We use 3 sequences for learning the entry zones by applying the Automatic strategy. Every time
a detection zone gives rise to a target, this zone is stored. From the 3 sequences “Browse1”,
“Meet Crowd” and “Meet WalkTogether1” 12 detection zones are obtained. They cover the
three most important entry zones of the scene. Figure 9 and Table 6 show the result of drawing
at random from this list.

The TRDR is still inferior to the benchmark, but the FAR is smaller than in the experiment
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Figure 8: Performance of the detection and tracking system with randomly selected subzones within the
entire image.

Method Frequency [Hz] TRDR [%] FAR [%]
full 77.8 48.0 50.1
15/1 17.7 23.5 78.6
10/1 22.5 33.6 72.2
5/1 30.2 29.4 71.8
3/1 36.7 29.8 66.1
1/1 46.5 25.8 64.2

Table 5: Performance of the detection and tracking system with randomly selected subzones within the
entire image.

Method Frequency [Hz] TRDR [%] FAR [%]
full 77.8 48.0 50.1
12/1 46.7 33.5 67.4
10/1 46.8 34.0 66.9
5/1 48.8 33.6 67.3
1/1 49.9 30.5 67.8

Table 6: Performance of the detection and tracking system with randomly selected subzones among the
entry zones learned from 3 training sequences by the automatic approach.
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Figure 9: Performance of the detection and tracking system with randomly selected subzones among the
entry zones learned from 3 training sequences by the automatic approach.

Automatic. A reason may be found that the detection zones are not as dense as in the strategy
Random. A longer learning phase would produce a higher number of detection zones, that may
be more dense and would increase the results. The nice point about this method is that it can be
generated automatically without human supervision.

3.4 Conclusion

We showed that the detection module of the detection and tracking system depends strongly
on the choice of the detection zones. We defined several strategies on how to select the zones
and evaluated the results with respect to annotated ground truth. The best result is obtained
by the strategy Random where small subzones within manually defined entry zones are drawn
at random. We obtain an equal TRDR as the benchmark and the FAR decreases. A possible
explanation is that subzones are less sensitive to false detections due to their size.

We also experimented with two fully automatic selection strategies. The performance is
significantly below the benchmark. More experiments should clarify, if a longer learning phase
would increase the performance.
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