
COMMUNICATIONS OF THE ACM March 2005/Vol. 48, No. 3 49

S
ince the early 1960s, the notion of
context has been modeled and exploited
in many areas of informatics. The
scientific community has debated
definitions and uses for many years
without reaching clear consensus [4].

Nonetheless, it is commonly
agreed that context is about
evolving, structured, and
shared information spaces, and
that such spaces are designed
to serve a particular purpose.
In ubiquitous computing, the
purpose is to amplify human
activities with new services
that can adapt to the circum-
stances in which they are used.

BY Joëlle Coutaz, James L. Crowley,
Simon Dobson, AND David Garlan

Context is not simply the state of a predefined
environment with a fixed set of interaction
resources. It’s part of a process of interacting
with an ever-changing environment composed
of reconfigurable, migratory, distributed, and
multiscale resources.

CONTEXT is KEY
Figure 1. In the

Olympic café, Bob
and Jane use the

objects on the
table to illustrate

their ideas for the
layout of the city
they are planning

together.

50 March 2005/Vol. 48, No. 3 COMMUNICATIONS OF THE ACM

Our purpose here is to illustrate how the
challenges of large-scale ubiquitous computing
can be tackled with a structured, flexible
approach to context. The key lies in providing
an ontological foundation, an architectural
foundation, and an approach to adaptation—
all of which scale alongside the richness of the
environment.

Ubiquitous computing embraces a model in
which users, services, and resources discover
other users, services, and resources, and inte-
grate them into a useful experience. The two
critical processes are to recognize users’ goals
and activities, and to map these goals and activ-
ities adaptively onto the population of available
services and resources [5]. Context informs
both recognition and mapping by providing a
structured, unified view of the world in which
the system operates. This is an ambitious goal,
especially compared to current systems that
need extensive manual configuration. The fol-
lowing examples make the challenges concrete.

The Hearsay service developed as part of the
GLOSS project allows users to pick up small
notes left for them in the environment [2]. It
makes sure users will find the message only if their
context is correct (right person in the right place at
the right time). The same approach is applied to
other applications, providing a structured link
between environment and behavior to improve util-
ity and usability. In Figure 1, the computer-vision
system used to identify and track the objects manip-
ulated by Bob and Jane determines what to look at
(the objects) and how to interpret (movement, loca-
tion) based on the context (Bob and Jane’s activity).

By approaching the active map, Bob dynamically
creates an interactive space from a public hot spot
and a private device (Figure 2). Here, the system
detects the presence of Bob and his device, it under-
stands that Bob is willing to use the service of the
active wall, and it both accommodates the diversity
of private devices and provides its own services (for
example, printing). In particular, the user interface
of the inquiry service must dynamically distribute
itself among the resources of the interactive space
and dynamically adapt to Bob’s private device with-
out creating confusion and distraction.

These simple examples illustrate three issues.
Firstly, context is not simply a state but part of a
process. It is not sufficient for the system to behave
correctly at a given instant: it must behave correctly
during the process in which users are involved. Cor-
rectness must be defined with reference to the
process, not simply the succession of states making

up that process. The printing ser-
vice might be able to select the
nearest (“correct”) printer at any
given point, but if the user is mov-
ing while printing a set of docu-

ments they may end up dispersed across a
bewildering range of printers regardless of the indi-
vidually correct point choices.

Related to all of this is the issue of a holistic treat-
ment of context. The “best” adaptation (by what-
ever metric) will typically be determined by a fusion
of information, often crossing semantic levels.
Using the printing service example, the system will
select a “correct” printer for documents if it knows
the user’s eventual location (perhaps derived from a
diary entry for a next meeting) and can route docu-
ments to the printer nearest to this location. This
view of context-as-process is more flexible than the
simpler view of context-as-state, and makes clear the
utility and usability of a system are derived from the
emergence of information and cooperation rather
than the sophistication of its individual compo-
nents.

The third issue is the risk of engendering a mis-
match between the system’s model of interaction
and users’ mental model of the system. For example,
how do Bob and Jane know the system understands
what they are doing? How can Bob predict (and pos-
sibly control) the location of his printed document?
In the conventional GUI genre, designers have typ-
ically developed prepackaged solutions for a prede-
termined interaction space. In ubiquitous
computing, the interaction space is ill-defined,
unpredictable and emerges opportunistically. In

Figure 2. Bob looks for
information from an active

map in the train station.

these conditions, new interaction techniques must
be devised to minimize system and users model mis-
matches (see the article by Russell, Streitz, and
Winograd in this section). If model mismatches are
unavoidable, then another issue is how to detect and
correct them. These issues can be addressed using a
conceptual framework as a starting point.

A Conceptual Framework for
Context-Aware Systems
The conceptual framework we propose includes an
ontological and an architectural foundation that
structure the adaptation process in a unified way.

Ontological foundation. Context is an informa-
tion space that can be modeled as a directed state
graph, where each node denotes a context, and edges
denote the conditions for change in context [1].
Each context is defined by a set of entities (typically
including literal values, as well as real-world and

information objects), a set of roles (for exam-
ple, functions) that entities may satisfy, a set of
relations between the entities, and a set of sit-
uations. Entities, roles, and relations are mod-
eled as expressions over observables captured
and inferred by the system at the appropriate
level of abstraction. Contexts are defined by a
specific set of situations, roles, relations, and
entities. For example, figures 1 and 2 denote
two contexts: the café context where entity
Bob plays the role of an architect, and the
train station context where entity Bob plays
the role of a traveler. A shift in context corre-
sponds to a change in the set of entities, a
change in the set of possible relations between
entities, or a change in the set of roles that
entities may play (as between the context café
and the train station context).

The situations within each context, in turn,
may also be organized as a graph of states. Sit-

uations denote specific configurations of entities,
roles, or relations. Within a context, all situations
share the same set of observables, entities, roles, and
relations. The current situation is altered by a change
in the number of entities (for example, in the “café”
context, when Jane enters the café, the discussion
can start), or a change in the role assignment to an
entity (a lump of sugar is now used to represent a
building), or a change in the relations between two
entities (when Bob and Jane switch from a face-to-
face position to a side-by-side configuration). A
graph of situations provides a tool that can be used
by software components to predict and adapt
according to their contract (for example, the user
interface can be rendered differently on the table
when both Bob and Jane sit side by side).

Entities, roles, relations, and observables are
abstract classes that denote the state dimension of
context. They are instantiated within runtime infra-

COMMUNICATIONS OF THE ACM March 2005/Vol. 48, No. 3 51

Context informs both recognition and mapping
by providing a structured, unified view of the
world in which the system operates. This is
an ambitious goal, especially compared to

current systems that need extensive
manual configuration.

structures that denote the process dimension of con-
text.

Runtime infrastructure model. A runtime infra-
structure is middleware that runs reliably and per-
manently to provide applications with a “public
utility” for services. Such a public utility provides
economy in program development, and facilitates
cooperation among components as well as consis-
tent behavior across applications. An infrastructure
for context-aware comput-
ing must provide context
services accessible from
anywhere on the planet,
from a fixed network
infrastructure to sponta-
neous interactive islands.

Context services form a
fabric structured into mul-
tiple levels of abstraction,
as illustrated in Figure 3. At the lowest level, the sys-
tem’s view of the world is provided by a collection of
sensors that may be physical sensors such as RFID’s
or software sensors that probe a user’s identity and
platforms. The sensing layer generates numeric
observables. To determine meaning from numeric
observables, the system must perform transforma-
tions. The perception layer is independent of the
sensing technology and provides symbolic observ-
ables at the appropriate level of abstraction.

The situation and context identification layer
identifies the current situation and context from
observables, and detects conditions for moving
between situations and contexts. Services in this
layer specify the appropriate entities, roles, and
relations for operating within the user’s activities.
They can be used to predict changes in situation or
in context, and thus anticipate needs of various
forms (system-centric needs as well as user-centric
needs). Finally, the exploitation layer acts as an
adapter between the application and the infrastruc-
ture. This is where applications express their

requests for context services at a high level of
abstraction.

These conceptual principles must be tuned and
reconciled with practical considerations such as
portability (for example, across operating systems),
computation cost (for example, memory footprint,
latency, bandwidth, and power consumption), and
scalability (from microscopic to planetwide). A
variety of implementations at different scales and

optimized for different
targets are needed,
united by common
interfaces. At every
level of abstraction,
one must incorporate
mechanisms and facili-
ties to support privacy,
trust, and security (see
the article by Lahlou et
al. in this section), as
well as history manage-
ment and discovery/
recovery. These protec-
tive measures pose the
challenge of supporting

multiple views of the same information at different
levels of abstraction—essentially a truth-mainte-
nance problem over the knowledge base. Indeed,
this problem is exacerbated by the dynamic nature
of system adaptation and development.

Adaptation and Development
Adaptation allows a system to maintain consistent
behavior across variations in operating environ-
ments. The environment denotes the physical
world (for example, in the street, lighting condi-
tions), the user (identification, location, goals, and
activities), social settings, and computational, com-
municational, and interactive resources. Develop-
ment refers to the automatic acquisition of
situation and context, and ultimately the acquisi-

52 March 2005/Vol. 48, No. 3 COMMUNICATIONS OF THE ACM

Exploitation

P
ri

va
cy

/S
ec

ur
it

y/
T

ru
st

H
is

to
ry

D
is

co
ve

ry
/R

ec
ov

er
y

Situation and context identification

Perception: symbolic observables

Sensing: numeric observables

Figure 3. Levels of
abstraction for a
general-purpose
infrastructure for
context-aware
computing.

How can context models evolve and develop
without introducing disruption? The challenge

is to find the appropriate balance between
implicit and explicit interaction for providing

the feedback required for development.

tion of the entities, roles, and relations from which
situations and contexts emerge.

Correctness in ubiquitous computing may be
understood as compliance with a contract, whether
the contract stands between software components,
or between the system and the human being. A typ-
ical contract is that the gross behavior of the system
remains the same; for example, the inquiry system
used by Bob remains about seeking information in
whatever context it executes. However, the detailed
behavior may change with context; for example, the
filtering criteria based on time and location, as well
as the rendering of information based on the
resources available in the interactive space. At least
from a user’s perspective there is often a well-defined
behavioral envelope within which adaptation makes
sense [3].

Adaptation and development are fundamental to
providing useful and usable services to a variety of
users in the presence of large variations in resources
and activities. Context is too complex to be prepro-
grammed as a fixed set of stable variables: worse, the
contract itself, which defines “correct behavior,” is
not always precisely specifiable in advance. Thus, the
context model, contract, and adaptation process
must develop through observation and interaction
with the environment. At the same time, this devel-
opment process must not be disruptive. This creates
a dilemma: How can context models evolve and
develop without introducing disruption? The chal-
lenge is to find the appropriate balance between
implicit and explicit interaction for providing the
feedback required for development. We must deter-
mine the appropriate degree of autonomy, and this
problem can impact every level of abstraction.

One attractive solution to these constraints is to
observe that the correct selection of elements—
including adaptation strategies, interfaces, devices,
information—can only be made in the infrastruc-
ture. This suggests replacing explicitly coded
responses to situations and contexts, which can only
accommodate a fixed set of predicates, with a higher-
level, more knowledge-intensive use of machine-
readable strategies coupled with reasoning and
learning. This goes beyond the usual distinction of
closed- versus open-adaptive systems [6].

Current learning technologies require large sets of
training data—something difficult to obtain for an
extensible environment. Nondisruptive develop-
ment of context models will require new ways of
looking at learning, and may ultimately require a
new class of minimally supervised learning algo-
rithms that will need to be studied explicitly as part
of semi-autonomous systems.

Conclusion
Context is key in the development of new services
that will impact social inclusion for the emerging
information society. For this to come true, we must
find the proper balance between contradictory fea-
tures. If context is redefined continually and ubiqui-
tously, then how can users form an accurate model
of a constantly evolving digital world? If system
adaptation is negotiated, then how do we avoid dis-
ruption in human activities? We believe that clear
architecture and a well-founded, explicit relationship
between environment and adaptation are the critical
factors; indeed, they are the key that will unlock
context-aware computing at a global scale.

References
1. Crowley, J., Coutaz, J., Rey, G., and Reignier, P. Perceptual components

for context-aware computing. In Proceedings of the Fourth International
Conference of Ubiquitous Computing, (Göteburg, Sweden, Sept./Oct.
2002). Springer, 117–134.

2. Dearle, A., Kirby, G., Morrison, R., McCarthy, A., Mullen, K., Yang, Y.,
Connor, R.C.H., Welen, P. and Wilson, A. Architectural support for
global smart spaces. Mobile Data Management (2003), 153–164.

3. Dobson, S. and Nixon, P. More principled design of pervasive comput-
ing systems. In Proceedings of Engineering for Human-Computer Interac-
tion and Design, Specification and Verification of Interactive Systems.
(Hamburg, Germany, July 2004). Springer-Verlag.

4. Dourish, P. Where the Action Is: The Foundation of Embodied Interaction.
MIT Press, Cambridge, 2001.

5. Garlan, D., Siewiorek, D., Smailagic, A. and Steenkiste, P. Project Aura:
Towards distraction-free pervasive computing. IEEE Pervasive Comput-
ing 21, 2 (Apr.-June, 2002), 22–31.

6. Oreizy, P., Taylor, R., et al. An architecture-based approach to self-adap-
tive software. IEEE Intelligent Systems 14, 3 (1999), 54–62.

The GLOSS project was funded by the EU Future and Emerging Technologies initia-
tive as part of the 5th Framework IST program.

Joëlle Coutaz (Joelle.Coutaz@imag.fr) is a professor at
Universitè Joseph Fourier, Grenoble, France.
James L. Crowley (James.Crowley@inrialpes.fr) is a professor at
Institute National Polytechnique de Genoble, and the director of the
Laboratoire GRAVIR at INRIA Rhone-Alpes, Montbonnet, France.
Simon Dobson (simon.dobson@computer.org) is a lecturer in the
Department of Computer Science at the University College, Dublin,
Ireland.
David Garlan (garlan@cs.cmu.edu) is a professor in the
Department of Computer Science at Carnegie Mellon University,
Pittsburgh, PA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2005 ACM 0001-0782/05/0300 $5.00

c

COMMUNICATIONS OF THE ACM March 2005/Vol. 48, No. 3 53

