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Abstract

This paper presents a robust tracking system that em-
ploys a supervisory controller to dynamically control the
selection of processing modules and the parameters used
for processing. This system employs multiple pixel level de-
tection operations to detect and track blobs at video rate.
Groups of blobs can be interpreted as related components
of objects during an interpretation phase. A central supervi-
sor is used to adapt processing parameters so as to maintain
reliable real time tracking. System performance is demon-
strated on the PETS 04 data set.

1. Introduction

This paper presents an architecture for robust on-line
tracking and interpretation of video streams. The system
is based on a real time process managed by a supervisory
controller. During each cycle, target blobs are observed and
updated using simple pixel level detection processes. De-
tection procedures are then specified in a number of detec-
tion regions to detect new blobs. An evaluation phase is
used to assess system performance and to adapt processing
S0 as to maintain both reliability and real time (video rate)
processing. An interpretation phase is then run to interpret
groups of blobs as more abstract objects. Performance for
this system is illustrated using the PETS 04 data set.

The paper starts with an overview of the system archi-
tecture. Section 3 describes the underlying principle of
the core modules followed by technical details of the im-
plementation. Section 4 describes a method for automatic
adaption of the parameters necessary for the tracking sys-
tem. The flexibility of the architecture is demonstrated in
section 5. Section 6 evaluates the performance of this sys-
tem on the PETS 04 data sets.

2. Architecture

Figure 1 shows the system architecture. The core of the
tracking system is composed of a supervisor, a target initial-
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Figure 1. Visual tracking using a central su-
pervisor architecture with core modules en-
ables the flexible plug-in of higher level mod-
ules.

isation module (Detection Region) and a tracking module
(Target Observation). These modules are detailed in sec-
tion 3.

The supervisor acts as a process scheduler, sequentially
executing modules in a cyclic process. Each cycle begins
by acquiring the current image from an image buffering sys-
tem (video demon). For each image, targets are tracked and
new targets are detected. The supervisor enables a flexi-
ble integration of a several modules. During each cycle, for
each target, the supervisor can call additional modules for
analysis and interpretation as needed. During each cycle,
the currently listed image processing operation for each tar-
get is applied to the target’s region of interest. In this way,
the appropriate image processing procedure can be changed
and new image processing procedures can be added without
changing the existing system architecture. Section 5 shows
examples on this flexible architecture by adding modules
for head and hand tracking, for eye detection and tracking
and for general target identification.



Figure 2. Target tracking by background dif-
ferencing. The central person is tracked us-
ing all pixels whereas the two other persons
are tracked using every second pixel.

3. Thetracking system

In this section, we describe the theoretical aspects and
the details on the actual implementation of the core tracking
system.

3.1 Energy detection

Currently, targets can be detected by energy measure-
ments based on background subtraction or intensity normal-
ized color histograms. The background subtraction mod-
ule computes a difference image I; from the current frame
I = (Ired, Igreen, Ibiue) and the background image B =
(Breda Bgreen7 Bblue):

I; = %( | Ired — Bred | + | Igreen —
| Iblue - Bblue | )

The background image B is updated with each frame us-
ing a weighted averaging technique, with a strong weight
applied to the previous background, and a small weight ap-
plied to the current image. This procedure constitutes a sim-
ple first order recursive filter along the time axis for each
pixel. The background image is only updated for those pix-
els that do not belong to one of the target ROIs.
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Figure 2 shows an example of target tracking by back-
ground subtraction. The right image represents the back-
ground difference image I after processing of three ROI’s.

Three targets can be clearly identified. Notice that the cen-
ter target appears as solid white, while the adjacent targets
appear to be "hashed”. This is the result of optimization that
allows the processing to be applied to every Nth pixel. In
this example, the two adjacent regions were processed with
N = 2, while the center target was processed with N = 1.
N is determined dynamically during each cycle by the pro-
Ccess supervisor.

The position and extent of a target are determined by the
moments of the detected pixels in the difference image I
within the ROI. The center of gravity (or first moment) gives
the position of a target. The covariance (or second moment)
determines the spatial extent, and can be used to determine
width, height, and slant of a target. These parameters also
provide the target’s search region in the next image.

Chrominance information can be used to provide prob-
abilistic detection of targets. The intensity for each RGB
color pixel within a ROI is normalized to separate chromi-
nance from luminance.
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These color components have the property to be robust to
intensity variations [6].

The probability that a pixel takes on a particular color
can be represented as a histogram of (r, g) values. The his-
togram h7 of chrominance values for a target, 7", provides
an estimate of the probability of a chrominance vector (r, g)
given the target p(r, g|T). The histogram of chrominance
for all pixels hotq: gives the global probability p(r, g) of
encountering a chrominance among the pixels. The prob-
ability of a target is the number of pixels of the target di-
vided by the total number of pixels. Putting these values
into Bayes rule shows that an estimate of the probability
of the target for each pixel can be obtained by evaluating
the ratio of the target histogram divided by the global his-
togram.
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For each image, a probability map, I,, can be created by
evaluating the ratio of histograms for each pixel in the im-
age. Figure 3 shows an example of face detection using a
ratio of chrominance histograms. The bottom image dis-
plays the probability map I,,. The probability map is only
evaluated within the search region provided by the Kalman
filter in order to increase processing speed.

A common problem in both background subtraction and
histogram detection are spatial outliers. In order to increase
the stability of target localization, we suppress the contribu-
tion of outliers using a method proposed by Schwerdt in [5].
With this method, the probability image I, is multiplied by



Figure 3. Targetdetection by normalized color
histogram.

a Gaussian weighting function centered at the predicted tar-
get position. This corresponds to a filtering by a strong po-
sitional prior. The effect is that spatial outliers lose their
influence on position and extent as a function of distance
from the predicted Gaussian. In order to save computation
time, this operation is performed only within the region of
interest R of each target. Even for small regions of interest
this operation stabilizes the estimated position and extent of
targets.
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The center of gravity u = [z, ,7, |7 is the Kalman pre-
diction of the target location. The spatial covariance X re-
flects the size of the target as well as the growing uncer-
tainty about the current target size and location. The same
principle can be applied to the background difference 1.

3.2 Tracking process
The tracking system is a form of Kalman filter [7]. The

state vector for each target is composed of position and ve-
locity. The current target state vector z;_; is used to make

a new prediction according to :

B = &7, with &, — ( (1) lAt ) (6)

and At the time difference between two iterations.
From the new position measurement z;, estimation up-
date is carried out.

3:} = 53\; + Kt(Zt — Hti’\;) (7)

This relation is important for balancing the estimation be-
tween measurement and prediction with the Kalman gain
K. The estimated precision is a diagonal covariance ma-
trix

5%, 00 0
o o0 o0 52
and is predicted by:
Pl =& 1P 1@ | + Qi1 9)

where @);_1 is the covariance matrix of the prediction error
which represents the growth of the uncertainty in the current
target parameters.

3.3 The core modules

The tracking process has been implemented in the
ImaLab environment [4]. This environment allows real-
time processing of frames extracted from the video stream.
The basic tracking system is composed of two modules:

e TargetObservation predicts for each target the position
in the current frame by a Kalman filter and then com-
putes its real position by background subtraction or
color histogram detection.

e DetectionRegion detects new targets by analysing the
energy (background differencing or color histogram)
within several manually defined detection regions.

Figure 1 shows the system architecture. Both core mod-
ules can be instantiated to use either background differenc-
ing or color histogram. For the PETS 04 experiments, we
use tracking based on background subtraction.

3.4 Target initialization module

Detection regions are image regions where new targets
can appear. Restricting detection of new targets to such
regions allows the system to reduce the overall computing
time. As a side effect, the use of detection regions also pro-
vides a reduction in the number of spurious false detections
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Figure 4. Initialisation of new target.

by avoiding detection in unlikely regions, but targets might
be missed when the detection regions are not chosen appro-
priately.

For each scenario a different set of detection regions
is determined. Currently, these regions are selected by
hand. An automatic algorithm appears to be relatively easy
to imagine. New targets are initialized automatically by
analysing the detection regions in each tracking cycle. This
analysis is done in two steps. In the first step, the subregion
which is occupied by the new target is determined by cre-
ating a 1 dimensional histogram along the long axis of the
detection region. The limits of the target subregion are char-
acterized by an interval, R, Rimaz, Whose values of the
one dimensional histogram are above a noise threshold (see
Figure 4). In the second phase, the energy density within
the so specified subregion R is computed as

1 ..
R TR > La(i,g) (10)
(i,7)ER

with |R| number of pixels of R. A new target with mean
i and covariance X is initialised when the measured en-
ergy density e exceeds a threshold. This approach has the
advantage, that targets can be detected independently of the
size of the detection region.

3.5 Tracking module

The module TargetObservation implements the target
tracking. The supervisor maintains a list of current targets.
Targets of this list are sequentially updated by the supervi-
sor depending on the feedback of the modules. For each tar-
get, a new position is predicted by a first order Kalman filter.
This prediction determines a search region within which the
target is expected to be found. A target is found by apply-
ing the specified detection operation to the search region. If
the average target detection energy is above a threshold, the
target observation vector is updated. This module depends
on following parameters:

e Detection energy threshold: this represents the average
energy threshold validating the target existence.

e Sensitivity threshold : this parameter thresholds the
energy image (I in case of background differencing
or I, in case of chrominance detection). If the value is
0, the raw data of the energy image is used.

e Target area threshold: A step size parameter N enables
faster processing for large targets by processing only 1
out of V pixels. When the target surface is larger than
a threshold, N is increased. This temporary measure
will be replaced by a more sophisticated control logic
based on computing time. Figure 2 illustrates the use
of this parameter.

3.6 Split and merge of targets

In real world video sequences, especially in the domain
of video surveillance, it often happens that targets come to-
gether, move in the same direction for a while and then sep-
arate. It can also occur that close targets occlude each other.
In that case only one target is visible at the time, but both
targets are still present in the scene. To solve such prob-
lems, we use a method that allows merging and splitting of
targets. This method enables to keep track of occluded tar-
gets and also to model common behavior of a target group.
The PETS 04 sequences contain many examples of such
group behavior.

A straight forward approach is applied for the detection
of target split and merge. Merging of two targets that are
within a certain distance from each other is detected by eval-
uating following equation:

¢/(a+ b) < threshold (11)

where c is the distance between the gravity centers of both
targets, a and b are the distances between the center of grav-
ity and the boundary of the ellipse defined by the covariance
of the respective target(see Figure 5 (left)). In our imple-
mentation we use a threshold = 0.8.
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Figure 5. (left) Merging of targets as afunction
of the targetrelative position and size. (right)
Splitting detectors are defined proportionally
to the targetsize.

Splitting of targets is implemented by placing detection
regions around the target as shown in Figure 5 (right). The
size and location of the split detection regions are propor-
tional to the target size. Within each split detection re-
gion, the average enery is evaluated in the same way as
in the target initialisation module. A new target is cre-
ated if this average energy is greater than the threshold
u = energy density x split coefficient. The parameter split
coefficient controls the constraints for target splitting.

4. Automatic parameter adaption

Target initialization and tracking by background differ-
encing or histogram detection requires a certain number of
parameters, as mentioned in the previous sections (detec-
tion energy threshold, sensitivity, density energy threshold,
«v, split coefficient, area threshold).

In order to preserve the re-usability of the tracking mod-
ule and guarantee good performance in a wide range of dif-
ferent tracking scenarios, it is crucial to have a good pa-
rameter setting at hand. Up to now, parameter adaption is
done manually. This is a very tedious job which might need
frequent repetition when the scene setup has changed.

In this section we propose a first attempt of a module
that automatically finds a good parameter setting. As a first
step, we consider the tracker as a classical system with con-
trol parameters and noise perturbations (see Figure 6). The
system produces an output y(¢) that depends on the input
r(t), some noise d(t), and a set of parameters that affect the
control module K [1].

4.1 Algorithm
First we need to explore the effect of particular parame-

ters on the system. The goal of this step is to identify the
important parameters, their relation and eventually discard
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Figure 6. Acontrolled system

parameters with little effect. For a sequence for which the
ground truth =(¢) is available we vary the parameters sys-
tematically and measure the output of the system, yp, (t)
for a particular parameter setting P in the parameter space
P. yp, (t) and r(t) are split in m sections according to m
intervals s; = [t;—1,%],i=1,...,m

For each parameter setting P, and each interval r(s;)
and yp, (s;) are known. From these input/output correspon-
dences we can compute the transfer function f(yp, (si)) =
r(s;) by a least squares approximation. The overall error
of the transfer function on the sequence is computed as fol-
lows:

e=|lr(t) — flyp.(t flyp,(si))ll (12)

|I—ZIIT

For each Py, we determine the transfer function that mini-
mizes this error. The average error (€ = ¢/n, n number of
frames) is used to characterize the performance of the sys-
tem with the current parameter setting. This is a very coarse
approximation, but as we will see, the average error evolves
smoothly over the parameter space.

We consider polynomial transfer functions of first and
second order (linear and quadratic) of the following form

k) + (13)

mty) = Aoyt
(17( k) +A1y(tk)+b (14)
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with transfer matrices A; and offset b.

The measurements have either two or four dimensions.
In the two dimensional case, the measurements contain the
coordinates of the center of gravity of the target. The four
dimensional case also contains the height and width of the
target bounding box. We could have considered an addi-
tional dimension for the target slant, but we discarded this
possibility due to the discontinuity of the slant measurement
at 180°.

The linear transfer function estimated from the data of
the sequences Walkl.mpeg and Walk3.mpeg produce good
results. We observe a transfer matrix A that is close to
identity. The quadratic transfer function has a smaller €, but
the transfer matrix A5 has very low values and is therefore



not significant. This means that the linear transfer function
is a good model for our system.

4.2 Exploration of the parameter space

The average error of the best transfer function evaluated
on the entire test sequence is used to characterize the per-
formance of the controlled system. The parameter space
can be very high dimensional. Therefore, exploring the en-
tire space can be time consuming. To cope with this prob-
lem we assume that some parameters evolve independently
from each other. This allows to restrict the search of an op-
timal parameter value to a low dimensional hyperspace. In
the experiment we use following default values for the con-
stant parameters of the hyperspace: detection energy = 10,
density = 15, sensitivity = 20, split coefficient = 2.0, o =
0.001, area threshold = 1500. We experiment on sequence
Walk1.mpeg except for figure 7.

Figure 7 shows the surface produced by varying the de-
tection energy threshold and the sensitivity threshold simul-
taneously. Figure 8 shows the error evolution by varying the
split coefficient and the sensitivity. The optimal parameter
value is different for each sequence. This means that the
parameters are sequence dependent. In all cases the error
evolves smoothly. This means that we are dealing with a
controlled system and not with a system following chaotic
or arbitrary rules.

Figure 9 (left) provides evidence to set « = 0.1. Fig-
ure 9 (right) shows that the density threshold has no effect
on the average error. This parameter is therefore a candidate
that needs not be considered for further exploration of the
parameter space.

Figure 10 shows the effect of the parameter area thresh-
old. This parameter treats one pixel out of two for targets
that are larger than area threshold pixels. This explains the
increase of the error for small thresholds and the speed up
in processing time. It is interesting to see, that the error in-
crease is very small, less than 4% error increase for a 25%
gain in processing time. Our method allows to identify this
kind of relations between parameters.

4.3 Summary

We have shown a method to evaluate the performance
of a system controlled by a set of parameters. The average
error is used to understand the effect of single parameters
and parameter pairs. This method allows to verify that our
tracking system has a controlled behavior. We identified
that the density parameter has no effect on the error per-
formance and it can be removed from the parameter space.
The area threshold parameter influences the overall process-
ing time and the average error. With our method, we found
that the increase in error is small with respect to the gain in

Figure 11. Modules for face and hand obser-
vation are plugged into tracking system.

processing time. This is an interesting result which a dy-
namic control system should take into account. The exper-
iments show that the optimal parameter setting estimated
from one sequence scenario must not be optimal for an-
other sequence. This needs to be explored by evaluating
more data sequences. Another important point is that the
approach requires ground truth labelling. This means that
our method can not find the optimal parameters when the
ground truth is unknown. Likelihood may be appropriate in
some cases to replace the ground truth, but the results will
be inferior since the likelihood increases the noise perturba-
tions.

5. Tracking : optional higher level modules

In this section we demonstrate the flexibility of our track-
ing system. The proposed architecture enables easy plug in
of higher level modules which enables the system to solve
quite different tasks.

5.1. Face and hand tracking for human computer
interaction

Modules for face and hand tracking use color histogram
detection. Face and hands are initialised automatically with
respect to a body detected by background differencing. This
means that the same tracking principle is applied to faces
and hands at a higher level. An example is shown in Fig-
ure 11.

5.2. Eye detection for head pose estimation
This module detects facial features by evaluating the re-

sponse to receptive field clusters [2]. The method detects
facial features robust to scale, lighting variation, person and
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Figure 7. Evolution of the average error over detection energy threshold and sensitivity threshold
(sequence Walkl.mpeg (left) and Walk3.mpg (right) and default values for free parameters).
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Figure 12. Real-time head pose estimation.

head pose. The tracking system provides the precise face
location which allows the combined system to run in real
time. Figure 12 shows an example of the eye tracking mod-
ule.

5.3. Agent identification

The agent identification module provides an association
between individual features and tracked targets by back-
ground subtraction. ldentification of each tracked blob is
carried out by elastic matching of labelled graphs where the
labels are receptive field responses [2]. The degree of cor-
respondence between the model and the observations ex-
tracted from the ROI provided by the tracking system is
computed by evaluating a cost function. The cost function
is a weighted sum of the spatial similarity and the appear-
ance similarity [3, 8]. Figure 13 shows a successful identity
recovery after a target occlusion. The system currently pro-
cesses 10 frames/s.

Yo

Occlusion: cost pers1 488, pers2 1470 Split: cost pers1 2073, pers2 735

Figure 13. Example of asplitand merge event
with successful identity recovery.
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6. Tracking performance of the core modules

In order to evaluate the performance of our tracking sys-
tem, we have tested the core modules on 16 of the PETS 04
sequences (17182 frames containing 50404 targets marked
by bounding boxes). In this section we give a brief sum-
mary of the tracking results.

Figure 14 shows the receiver operator curve for all 16 se-
quences. Our system has a low false detection probability of
9.8% and a true detection probability of 53.6%. This trans-
lates to a recall of 53.6% (27030 correct positives out of
50404 total positives) and a precision of 90.2% (27030 cor-
rect positives out of 29974 detections). The reason for the
relatively low recall is the fact that the ground truth label-
ing takes into account targets that are already present in the
scene and targets that pass on the gallery at the first floor.
Our tracking system relies on the method of detection re-
gion for target initialization. Both type of targets are not
detected by our tracking system, because they are not ini-
tialized.

The tracking results are evaluated with respect to other
parameters such as errors in detected position, size, and ori-
entation, the time lag of entry and exit. The performance of
our system with respect to these parameters is summarized
in Table 1. Our system performs very well in position detec-
tion, orientation estimation and exit time lag. The bounding
box produced by the tracking system is significantly smaller
than the bounding box of the ground truth. This is due to
the fact that the tracking system estimates the bounding box
from the covariance of the pixels with high energy whereas

1The sequences as well as the statistics are available at the CAVIAR
home page http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm

Average errorin | average value maximum value
Position 6 - 7 pixels 13 - 15 pixels
Size -160% to -240% -240%
Orientation +0.5% +30%
Entry time lag 50 to 80 frames | 100 to 160 frames
Exit time lag 1 frame 1 frame

Table 1. Evaluation of the tracking results with
respectto measurementprecision.

a human draw a bounding box that includes all pixels that
belong to the target. The tracking system can produce a
similar output by computing the connected components of
the energy image. This is a costly operation. In the case
where the connected components bounding box is used for
position computation, the position become more unstable.
For this reason we decided to use the first and second mo-
ments of energy pixels for target specification. The entry
time lag is a problem related to the detection region. A hu-
man observer marks a new target as soon as it occurs. The
detection region requires that the observed energy is above
the energy density threshold.

7. Conclusion

We have presented an architecture for a tracking sys-
tem that consists of a central supervisor, a tracking mod-
ule based on background subtraction or color histogram de-
tection combined with Kalman filtering and an automatic
target initialization module restricted to detection regions.
These three modules form the core system. The central su-
pervisor architecture has the advantage that additional mod-
ules can be plugged in very easily. New tracking systems
can be created in this way that can solve different tasks.

The tracking system depends on a number of parameters
that influence the performance of the system. Therefore,
finding a good parameter setting for a particular scenario is
essential. We have proposed to consider the tracking system
as a classical controlled system and identified a method to
evaluate the quality of a particular parameter setting. The
preliminary experiments show that small variations of the
parameters produce smooth changes of the average error
function. Using this behavior, we can improve the perfor-
mance of our tracking system by finding a good parame-
ter setting using gradient descend in the parameter space.
Unfortunately, the experiments on the automatic parameter
adaption are preliminary and could not yet be integrated in
the performance evaluation of the system.
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