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Computation of generic features for object classification

Daniela Hall
�
, and James L. Crowley

GRAVIR–IMAG, INRIA Rhônes–Alpes
38330 – Montbonnot Saint Martin, France

Abstract. In this article we learn significant local appearance features for visual
classes. Generic feature detectors are obtained by unsupervised learning using
clustering. The resulting clusters, referred to as “classtons”, identify the signifi-
cant class characteristics from a small set of sample images. The classton chan-
nels mark these characteristics reliably using a probabilistic cluster representa-
tion. The classtons demonstrate good generalisation with respect to viewpoint
changes and previously unseen objects. In all experiments, the classton channels
of similar images have the same spatial relations. Learning of these relations al-
lows to generate a classification model that combines the generalisation ability
from the classtons and the discriminative power from the spatial relations.
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1 Introduction

Structural matching is a classical approach for object recognition. Gaussian derivatives
measure the basic geometries of the appearance of local features. In such a feature
space, similarity of features can be measured by the distance between their vectorial
representation. This feature matching principle is widely used for image indexing, and
object identification [8,14].

Classification is a task that requires the assignment of previously unseen objects to
the corresponding class of visually similar objects. Classical feature matching fails in
many cases due to large feature variations among objects a class. For this reason vision
systems have difficulties to generalize from a small set of images to other images of
the same class.This makes classification a much harder problem than identification of
previously seen objects.

Successful classification relies on the extraction of significant class features that
should be robust to changes in viewpoint, object identity, position, scale and lighting
conditions. This article adresses the problem of the extraction of such significant fea-
tures. Generic feature detectors have the property that they mark the most characteristic
features with respect to a learned class. In our method, the generic features are computed
automatically by unsupervised clustering. We propose a measure for the selection of the
most significant clusters and several experiments show that the selected clusters detect
those significant features robust to changes in viewpoint and object identity.�
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2 Composition of generic features (classtons)

The idea of vector quantization or clustering of the outputs of linear filter sets has been
applied by Leung and Malik for texture recognition and image segmentation [6,9]. They
define texture as entity with spatially repeating properties. Zhu and his collaborators
obtain clusters robust to rotation and scale changes by applying a transform component
analysis to image patches before clustering [15]. The obtained textons that represent the
texture clusters allow the efficient modeling of textures. Schmid has applied the same k-
means clustering scheme to compose generic features for image indexing [13]. We want
to extend this idea and use exclusively clusters in feature space for image description,
recognition and classification.

A visual object class consists of visually similar images with spatially repeating
properties over these images. Under these constraints the clustering of vector repre-
sentations of local features is able to detect automatically the repeating features and
learn their variations. Clustering is therefore a means for the computation of the desired
generic features.

3 Clustering approaches

The success of classification depends on the generic features (the classton vocabulary).
The choice of an appropriate clustering algorithm is crucial. In this section we evaluate
k-means, k-means with pruning and DBScan. The methods are compared on several
test databases.

The choice of the comparison of those three methods is motivated by the work of
Leung, Malik, Schmid, and Zhu, who all use k-means. Leung [6] uses k-means with
pruning. This method is less sensitive to cluster center shifts due to outliers than the
original k-means algorithm. We compare these standard methods to a new clustering
algorithm from the data mining community. Ester [1,2] developed DBScan for the ex-
pansion of density clusters of arbitrary shape with a minimum of domain knowledge.
The definition of DBScan allows to find natural boundaries between clusters. This prop-
erty has the effect that the number and the shape of the significant feature clusters is
automatically adapted to the data.

3.1 K-Means clustering

K-means is an agglomerative clustering method with a specific objective function. As-
suming that there are

�
clusters and each cluster is represented by its center of gravity,

an objective function is obtained by evaluating the distances of image points, �����	� ,
to their respective cluster center, 
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The algorithm assigns each point to the closest cluster center and updates the cen-
ters. These steps are iterated until the objective function reaches a minimum. K-means



has linear complexity ; �=< � with
<

number of points. The simplicity and the efficiency
of the algorithm explains its popularity.

In most applications the optimal number of clusters is unknown. The objective func-
tion is proven to converge to a local minimum, not the global minimum. The problem
of convergence to a suboptimal solution can be overcome by running k-means many
times and retaining the best solution. This multiplies the computation time and there is
no guarantee of the quality of the solution [3].

Standard k-means has the disadvantage that data points are assigned to the currently
closest cluster center. Outliers as a result to noise are always present in the data. In
extreme cases, the assignment of outliers shifts significantly the center of gravity of the
cluster and decrease the overall quality of the solution. K-means with pruning is less
sensitive to outliers.

3.2 K-Means with pruning

In the first step, standard k-means is applied with a large number of clusters (in the range
of 500 to 8000 clusters). Then these clusters are reduced subsequently. Close clusters
are merged and clusters with few elements are suppressed. This pruning step takes
as parameters the distance > between clusters for merging and a number of required
elements ?A@ <CBEDGF . The pruning step is repeated with increasing > until the desired
number of clusters is reached.

This algorithm is computationally more expensive, because the data is represented
by a larger number of initial clusters requiring more iterations. Subsequent merging and
discarding of small clusters allow to assign fewer outliers to the clusters. The remaining
clusters are more representative for the image characteristics.

3.3 DBScan clustering

In this section we describe an alternative clustering algorithm that is based on expand-
ing clusters from a seed. This algorithm, referred to as DBScan, has been proposed by
Ester [1,2] for the organisation of spatial databases with minimal requirements of do-
main knowledge. The algorithm is density based and can discover density clusters of
arbitrary shape. This algorithm is interesting for the computation of classtons, because
the number of clusters is determined automatically.

The key idea of DBScan is that the neighborhood of cluster points has to contain a
minimum number of data points ?A@ <CBEDGF . In other words, the cardinality of a sphere
with radius > has to exceed the threshold ?A@ <CBEDGF . Such points can serve as seed for
cluster expansion. The algorithm is formalised by following definitions.

Definition 1 (directly density reachable) A point H is directly density reachable from
point I with respect to > and ?A@ <CBEDGF in the point set � if

– HJ�LKNM � IO�
– 
!P:QSR � K�M � IO�G�UTV?A@ <CBEDGF



Definition 2 (density reachable) A point H is density reachable from I with respect to >
and ?A@ <CBEDGF in � , denoted as HJTXWYI , if there is a chain IZ�)H � �76�6767� H%[\�]H such thatH � �L� and H ��^_� is directly density reachable from H � (see Figure 1).

Definition 3 (density connectivity) H is density connected to I with respect to > and?A@ <CBEDGF in � if there is a point
D �`� such that both H and I are density reachable

from
D

(see Figure 1). 
7PaQSR � K M � IO�b�Ucd�`?A@ <CBEDGF (2)e HJf#IgT W H and 
!P:QSR � K M � Hh�b�iTV?A@ <CBEDGF (3)

A cluster is defined as a set of density connected points which is maximal with
respect to density reachability. Noise is the set of points that are not contained in any
cluster. A cluster contains core and boundary points. Core points are those points that
fulfill 
!P:QSR � K M � IO�b�UTj?A@ <CBEDGF . Boundary points are points that fulfill

To find a cluster, DBScan starts with an arbitrary point H and retrieves all density
reachable points. If H is a core object, this yields a new cluster. If H is a non-core object,
no points are density reachable from H and it is assigned to noise. In the first case, the
density reachable points are used to expand the cluster until maximality. The algorithm
continues until all points are labelled.

DBScan has the advantage that every point is treated only once, by computing
!P:QkR � KNM � H��G� and assigning the point to the current cluster or to noise. A sophisticated
implementation of DBScan has a computational complexity of ; �l<Em�naoh�l< �G� . The num-
ber of clusters is determined automatically. Standard k-means does not reject outliers
which decreases the overall quality of the clustering. DBScan detects outliers automat-
ically and assigns them to noise.

3.4 Evaluation

K-means with pruning has a computational complexity of ; �=< � � , with
<

number of
points and

�
number of clusters. For standard k-means, the number of clusters is small

which results in a linear complexity of ; �=< � . DBScan needs to compute the nearest
neighbors for every point. In the current straight forward implementation the nearest
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Fig. 1. Density reachability and density connectivity



neighbor search requires ; �=< � . By using for example binary search trees, the complex-
ity can be reduced to ; �=mpn#oN�=< �b� . The overall complexity of the current implementation
is ; �=<Cq � .

The computational difference becomes clear in following experiment. The results of
the proposed clustering algorithms are evaluated on two data sets. Data set r has 63000
local image features extracted according to section 4 from four frontal face images from
the AR face database [10]. Data set s consists of 9600 local image features extracted
from four toy car pictures. The toy cars are segmented from the background, the faces
images are unsegmented.

Table 1 displays processing times (on a 600MHz Pentium III). Standard k-means
is fast, but the optimal number of clusters is unknown. To ensure that a good solution
is found, k-means should be run several times with changing

�
. This multiplies the

computation costs. K-means with pruning requires more iterations in order to minimise
the overall error. Pruning is then called subsequently with parameters > and ?A@ <CBEDGF
until the desired number of clusters is reached. For segmented images, DBScan is faster
than k-means with pruning.

k-means k-means with pruning DBScan
A (faces) 27 s, 6 iterations 1442 s, 27 iterations 7698 s, no iteration

B (toy cars, segmented) 12 s, 13 iterations 1712 s, 28 iterations 143 s, no iteration

Table 1. Processing time of image features from ( t ) unsegmented and ( u ) segmented images.

4 Feature prototype generation

In this section we describe the feature space used for feature extraction. In section 4.2
different cluster representations are evaluated. In order to select those clusters that cor-
respond to the desired signficant features we need to be able to evaluate the quality of a
particular cluster. Appropriate measures are proposed in section 4.3.

4.1 Feature description

Gaussian derivative receptive fields are used by many researchers for the description
of local feature appearance [4,8,11,12,14]. Low order derivatives measure the basic ge-
ometries of features [5]. Local features are represented by the response to a bank of
Gaussian derivative receptive fields centered on the image position. The receptive fields
are scale invariant due to normalization for intrinsic scale. We compute the intrinsic
scale as an extremum in the normalised Laplacian over scale as proposed by Linde-
berg [7].

We experiment with following feature spaces: first and second order derivatives and
first, second and third order derivatives. The suppression of the derivative of order zero
makes the feature less sensitive to illumination variations. The features are extracted



either at a fixed scale, or at the specific intrinsic scale. In the second case, only those
features are considered that actually display a maximum over scale within the prede-
fined range (in our experiments vw�	x�y 6 zO{%�b|}6 ~a~S� ). The data is normalised to compensate
for the dynamic of receptive fields of different orders such that the distribution has 0
mean and 1.0 standard deviation.

Scale normalized features are clustered without taking into account their local scale.
This has the advantage that features that occur at different scales due to perspective
transformation are assigned to the same cluster. On the other hand, the relative scale
between features of the same objects is lost. The scale relations between character-
istic features of an object is discriminant and worth preserving. Instead of using the
feature space

�l���-�8�����b�����&�b�����:�b���!� � , we propose to use
�l���&�b�����8�����-�b�����:�8���!�:� vC� .

This adds the local scale to the feature space. A relatively scale invariant object repre-
sentation is obtained that preserves the internal scale relations.

Figure 2 shows examples of clusters obtained from the toy car example using k-
means. The linear combination of the cluster prototypes are shown. By comparing the
left figures with the right figures, it can be observed that the classtons on the left and the
classtons on the right display the same basic geometries. This means that the extension
of the feature space to third order derivatives does not increase significantly the ability to
describe the present geometries. A feature space up to second order covers sufficiently
the geometry of the local features in the experiments.

4.2 Cluster representation

To enable classification we need to compute classton channels. In a classton channel
those points that belong to the classton are marked. The generation of the classton chan-
nel requires an assignment algorithm that decides if a particular feature belongs to the
classton. The quality of the assignment is closely related to the cluster representation.

The assignment can be computed by several algorithms. Many researchers use min-
imum distance to prototype [6,9,13]. This is a fast measure, but it does not take into
account the distribution of the cluster points. This measure is acceptable when the clus-
ters have close spherical shape or clusters are sufficiently far from each other. In the
typical case where clusters are elliptic point clouds, a better representation is obtained
by using a probabilistic measure based on the Mahalanobis distance.H ��� �8� �h�����7���\�b' � ��'	�C�/� +���� �� � ��'w�C�/�G� (4)

where � � is the covariance matrix of cluster
� � . Clusters of arbitrary shape can be

represented by a set of elliptic point clouds.
Figure 3 illustrates the effect of the different representation methods. The labels of

the assigned cluster are coded as grey values. We observe connected regions in the chan-
nel images. This is due to the effect that spatially close features have similar appearance
and are assigned to the same cluster. The connected regions of the probabilistic method
are more stable than the regions obtained by distance to prototype. Although, in this
example the differences are not significant, the probabilistic measure should be used to
reduce incorrect assignments.



(a) (b)
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Fig. 2. Cluster examples. (a) feature space up to order 2. (b) feature space up to order 3. (c) feature
space up to order 2 with scale. (d) feature space up to order 3 with scale.

4.3 Quality of clustering results

Clusters are by definition dense collections of data points. They are useful for classifica-
tion because they represent a collection of highly similar features. Under the condition
that the training images are visually similar, those dense clusters represent the most
significant features for the trained image class.

Several parameters can be used to judge the quality of a cluster, such as the den-
sity and the compactness in feature space and the connectedness of the regions in the
classton channel. The density of clusters depends on the total number of feature points.
For this reason, a threshold for reliable detection of dense clusters can not be found.
Compactness has the advantage that it is independent from the number of features,
under the condition that the learned features represent sufficiently the true feature dis-
tribution. A generic feature with good generalisation ability produces large connected
regions. Figure 5 shows an example of compact and connected clusters that specify
forehead, hair, eyes, nose, and lips as significant features of faces.



probabilistic reprojection original image minimum distance to prototype

Fig. 3. Effect on feature assignment using different cluster representations (probabilistic or center
of gravity).

Connectedness of regions can be measured as the average number of pixels per re-
gion. Compactness is defined as the ratio of a volume and the enclosing sphere. In order
to compute the compactness of a point cloud, we modify the geometrical definition of
compactness as follows:

Compact
��� � ��� ����p�_� v}��\� � � � v � � � (5)

The volume of a cluster
� � is approximated by the product of standard deviation of

its members in each dimension @J��y �76�676!�8� . The volume of the enclosing sphere
is computed as the maximum standard deviation to the power of

�
. Density can be

computed as average number of points per volume unit.
Connectedness allows to reduce the image to a number of regions. This gives the

required tolerance to region positioning that enables classification robust to viewpoint
changes and object identity. Figure 5 and Figure 6 show the classton channels of the
most compact and the most connected classtons computed from 15 frontal faces and 13
toy cars from 2 viewpoints respectively.

5 Experiments and observations

5.1 The test database

We use three different test databases. 15 frontal faces of size �#�O����y��:� from the AR face
database (men with and without glasses). Toy cars and toy animals of size

z#{ y��	�#�O�
from the ETH 80 database (13 cars and 5 horses). We use segmentation maps to focus
on the object features. Examples are shown in Figures 4 and 5.



Fig. 4. Example of the ETH 80 database.



5.2 Experiments

This section shows the results for the databases. We only display classton channels
that have high compactness and connectedness. The face example in Figure 5 demon-
strates the robustness to scale changes and occlusions caused by facial hair or glasses.
The example on the ETH 80 database shows that the classton channels are stable for
visually similar views. In all our experiments, the classton channels of visually simi-
lar images produce the same spatial relations. These relations can be learned and the
resulting model can then be used for classification. Such a model inherits the gener-
alisation ability from the classtons and obtains discriminative power from the relative
spatial relations.

The feature space used in the experiments is not normalised for orientation. The
computed classtons are therefore orientation dependent. Orientation is an important
feature for discrimination and in our examples orientation is needed to discriminate
horizontal features from vertical features. If rotation invariance is required, than the
invariance should be introduced by choosing a rotation invariant feature space as in [13].

Robustness to object identity We compute classtons from 15 frontal face images. Out
of the 37 k-means clusters we choose the 4 classtons that mark the most significant
features over several individuals (see Figure 5, corresponding clusters are marked with
same grey level). Note, that nose, forehead, cheeks, eyes, chin, upper lips are marked
by the same classton invariant of scale changes. The overall structure of the face is
recovered even in the case of occlusions by facial hair, or glasses.

Fig. 5. Classton channel for frontal faces from the AR face database. Significant facial features
are marked by the same classton channels, independent of identity, facial hair, glasses and scale
change.
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Fig. 6. Classton channels of the most compact and the most connected clusters computed from 26
side views of 13 toy cars (displayed are 6 channels coded as different grey levels). The classton
channels are superposed on the original images. We observe the robustness to viewpoint changes.
The wheels are automatically identified as significant features.

lat 90 lon 22 lat 90 lon 45 lat 90 lon 68lat 90 lon 0
(Trained image)

Fig. 7. Classton channels learned from full side view of 5 different horses. The channels are stable
for visually similar views (here 45 degrees). Classification is possible. The channels are unstable
for views that are not similar (right).



Robustness to viewpoint changes This section demonstrates the robustness to view-
point changes on two examples. Figure 6 shows the 5 most compact and most con-
nected classtons superposed on the image. We observe that the classtons determine the
wheels as significant features among the set of 13 toy cars shown in Figure 4. Due to
the very different car shapes, the wheels are the only common feature. Figure 7 shows
an example of the robustness to viewpoint changes. Significant features are stable for
visually similar views (the three leftmost figures). For views that are visually not simi-
lar (example Figure 7 right), the appearance of the channels changes considerably and
classification would be difficult.

6 Conclusion

We propose a method to detect significant parts of the learned object robust to object
identity, viewpoint, lighting conditions, pose, and scale of observation. Local appear-
ance features are described by an appropriate feature space. Generic features are com-
puted by unsupervised learning using clustering. The resulting classtons automatically
identify significant class characteristics from a small set of examples. These signifi-
cant characteristics are then reliably detected by means of the classton channels using a
probabilistic cluster representation.

Local image features are often affected by noise. As a consequence, noise is present
in the clusters computed from the features. We propose DBScan and k-means with
pruning to reduce the sensitivity to noisy features. In order to select those classtons that
display the best generalisation ability, we consider the density, the compactness of the
clusters in feature space and the connectivity of the features in image space.

The reprojection of the clusters demonstrates generalisation ability with respect to
previously unseen objects and robustness to viewpoint changes. The fusion of several
such classton channels provides a powerful means for robust classification by preserv-
ing the internal scale relations of the class features.

Without the robust detection of significant class features any classification algo-
rithm is going to fail. This is the motivation for this article and the presented clustering
technique is a means to robustly detect and identify the significant class features which
are essential for the composition of a model for classification.

The exact structure of the classification model is another complex problem and mer-
its an article on its own. The classton approach that preserves internal scale relations of
the features opens several interesting possibilities for the construction of classification
models, among these scale invariant classification by shifting the class model in scale.
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