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Abstract— In this article we propose an architecture of a track-
ing system that can judge its own performance by an auto-critical
function. Performance drops can be detected which trigger an
automatic parameter regulation module. This regulation module
is an expert system that searches a parameter setting with better
performance and returns it to the tracking system. With such
an architecture, a robust tracking system can be implemented
which automatically adapts its parameters in case of changes in
the environmental conditions. This article opens a way to self-
adaptive systems in detection and recognition.

I. INTRODUCTION

Parameter tuning of complex systems is often performed
manually. A tracking system requires different parameter set-
tings as a function of the environmental conditions and the
type of the tracked targets. Each change in condition requires
a parameter update. There is a great need to design an expert
system that performs the parameter regulation automatically.
This article proposes an approach and applies it to a real-
time tracking systems. The here proposed architecture for auto-
regulation is valid for any complex system whose performance
depends on a set of parameters.

Automatic regulation of parameters can significantly en-
hance performance of systems for detection and recognition.
Surprising little previous work has been published in this
domain [5]. A first step towards performance optimization is
the ability of the system to be auto-critical. This means that the
system must be able to judge its own performance. A perfor-
mance drop, detected with this kind of auto-critical function,
can trigger an independent module for auto-regulation. The
task of the regulation module is to propose a set of parameters
to improve system performance.

The auto-critical function detects a performance drop when
the measurements with respect to a scene reference model
diverge. In this case the automatic regulation module is trig-
gered to provide a parameter setting with better performance.
Section II explains the architecture of the tracking system and
the architecture of the regulation cycle. Section III explains
the details of the auto-critical function, the generation of the
scene reference model and the measure used for performance
evaluation. In section IV we explain the use of the regulation
module. We then show experiments that demonstrate the utility
of our approach. We finish with conclusions and a critical
evaluation.

Detection
region

list
Detection

Background
detector

Target initialisation

Estimation

detector
Background

PredictionTarget
list

Supervisor
Time

Robust tracking

Fig. 1. Architecture of the tracking and detection system controlled
by a supervisor.

II. SYSTEM ARCHITECTURE

In order to demonstrate the utility of our approach for auto-
regulation of parameters we choose a detection and tracking
system as previously described in [2]. Figure 1 shows the
architecture of the system. The tracking system is composed
of a central supervisor, a target initialisation module and a
tracking module. This modular architecture is flexible such
that competing algorithms for detection can be integrated. For
our experiments we use a detection module based on adaptive
background differencing using manually defined detection
regions. Robust tracking is achieved by a first order Kalman
filter that propagates the target positions in time and updates
them by measurements from the detection module.

The tracking system depends on a number of parameters
such as detection energy threshold, sensitivity for detection,
energy density threshold to avoid false detections due to noise,
a temporal parameter for background adaptation, and a split
coefficient to enable merging and splitting of targets (i.e. when
two people meet they merge to a single group target, a split
event is observed when a person separates from the group).

Figure 2 shows the integration of the parameter regulation
module and the auto-critical function. The auto-critical func-
tion evaluates the current system performance and decides if
parameter regulation is necessary. If this is the case, the tracker
supervisor sends a request to the regulation module. It provides
the its current parameter setting and current performance as
well as other data that is needed by the regulation module.
When the regulation module has found a better parameter
setting (or after a maximum number of iteration) it stops
processing and sends the result to the system supervisor that
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Fig. 2. Integration of the regulation module in a complex system.

updates the parameters and reinitialises the modules.
It is difficult to predict the performance gain of the auto-

regulation. Since the module can test only a discrete number
of parameter settings, there is no guarantee that the global
optimal parameter setting is found. For this reason, the goal
of the regulation system is to find a parameter setting that
increases system performance. Subsequent calls of the reg-
ulation module allow then to obtain a constantly increasing
system performance. The modular architecture enables the
use of different methods and apply the regulation to different
system kinds.

III. THE AUTO-CRITICAL FUNCTION

The task of the auto-critical function is to provide a fast
estimation of the current tracking performance. A performance
evaluation function requires a reliable measure to estimate the
current system performance. The used measure (described in
Section III-B) is based on a probabilistic model of the scene
which allows to estimate the likelihood of measurements.
The probabilistic scene model is generated by a learning
approach. Section III-C explains how the quality of a model
can be measured. Section III-D discusses different clustering
schemes.

A. Learning a probabilistic model of a scene

A model of a scene describes what usually happens in the
scene. It describes a set of target positions and sizes, but also
a set of paths of the targets within the scene. The model
is computed from previously observed data. A valid model
allows to describe everything that is going to be observed. For
this reason we require that the training data is representative
for what usually happens in the scene.

The ideal model of a scene allows to decide in a prob-
abilistic manner which measurements are typical and which
measurements are unusual. With such a model we can com-
pute the probability of single measurements and of temporal
trajectories. Furthermore, we can detect outliers that occur
due to measurement errors. The model represents the typical
behaviour of the scene. Furthermore it enables the system
to alert a user when unusual behavior takes place. This is
a feature which is useful for the task of a video surveillance
operator.

In this section we describe the generation of a scene
reference model which gives rise to a goodness measure that

can compute the likelihood of measurements y(ti) with respect
to the scene reference model. We know that a single mode
is insufficient to provide a valid scene description. We need
a model with several modes that associate spatially close
measurements and provide a locally valid model. The model
is composed from data using a static camera.

An important question is which training data should be used
to create an initial model. The CAVIAR test case scenarios [4]
contain 26 image sequences and hand labelled ground truth.
We can use the ground truth to generate an initial model. If
the initial model is not sufficient, the model can be refined
by adding tracking observations where the measurements with
low probability which are likely to contain errors are removed.

For the computation of the scene reference model, we
use the hand labelled data of the CAVIAR data set (42000
bounding boxes). We divide the model into a training and
a test set of equal size. The observations consist of spatial
measurements ~yspatial(ti) = (µx, µy, σ
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moments of the target observation in frame I(ti)). We can
extend these observations to spatio-temporal measurements
~yspatiotemp(ti) = (µx, µy, σ
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considering observations at subsequent time instances ti and
ti−1. Such measurements have the advantage that we take into
account the local motion direction and speed. A trajectory
y(t) is a sequence of spatial or spatio-temporal measurements
~y(ti). Single measurements are noted as vectors ~y(ti) whereas
trajectories y(t) are coded as vector lists. The following
approach is valid for both types of observed trajectories y(t).

To obtain a multi-modal model we have experimented with
two types of clustering methods: k-means and k-means with
pruning. K-means requires a fixed number of clusters that
must be specified by the user a priori. K-means converges to
a local minimum that depends on the initial clusters. These
are determined randomly, which means that the algorithm
produces different sub-optimal solutions in different runs. To
overcome this problem, k-means is run several times with the
same parameters. In section III-C we propose a measure to
judge the quality of the clustering result. With this measure
we select an optimal clustering solution as our scene reference
model.

The method k-means with pruning is a variation of the tradi-
tional k-means that produces stabler results due to subsequent
fusion of close clusters. In this variation, k-means is called
with a large number of clusters, k ∈ [500, 2000]. Clusters
that are close within this solution are merged subsequently
and clusters with few elements are considered as noise and
removed. This method is less sensitive to outliers and has the
characteristics of a hierarchical clustering scheme and at the
same time can be computed quickly due to the initial fast k-
means clustering. Figure 3 illustrates this algorithm.

B. Evaluating the goodness of a trajectory

A set of Gaussian clusters modeled by mean and covariance
is an appropriate representation for statistical evaluation of
measurements. The probability P (~y(ti)|C) can be computed
according to equation 2.
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Fig. 3. K-means with pruning. After initial k-means clustering close
clusters are merged and clusters with few elements are assigned to
noise.

The auto-regulation and auto-critical module need a measure
to judge the goodness of a particular trajectory. A simple
goodness score consists of the average probability of the
most likely cluster for the single measurements. The goodness
G(y(t)) of the trajectory y(t) = (~y(tn), . . . , ~y(t0)) with length
n+ 1 is computed as follows:

G(y(t)) =
1

n+ 1

n∑

i=0

max
k

(P (~y(ti)|Ck)) (1)

with

P (~y(ti)|C) = P (~y(ti)|~µ;U) (2)

=
1

(2π)dim/2|U |1/2 e
(−0.5(~y(ti)−~µ)TU−1(~y(ti)−~µ))

with ~µ mean and U covariance of cluster C. Trajectories have
variable length and may consist of several hundred measure-
ments. The proposed goodness score is high for trajectories
composed of likely measurements and small for trajectories
that contain many unlikely measurements (errors). This mea-
sure allows to reliably classify good and bad trajectories
independent of their particular length.

On the other hand, the goodness score does not take into
account the sequential structure of the measurements. The
sequential structure is an important indicator for the detection
of local measurement errors and errors due to badly adapted
parameters. To study the potential of a goodness score that
is sensitive to the sequential structure, we propose following
measure (see equation 3).

Gseq(v)(y(t)) =
1

m

m−1∑

i=0

log(P̃ (y(si))) (3)

which is the average log likelihood of the dominant term
P̃ (y(s)) of the probability of a sub-trajectory y(s) of length
v. We use the log likelihood because P̃ (y(s)) is typically very
small.

A trajectory y(t) = (y(s0), y(s1), . . . , y(sm−1)) is com-
posed of m sub-trajectories y(si) of length v. We develop
the measure for v = 3, the measure for any other value v is

developed accordingly. The probability of the sub-trajectories
is defined as:

P (y(si)) = P (~y(t2), ~y(t1), ~y(t0))

= P̃ (y(si)) + r

= P (Ck2
|~y(t2))P (Ck1

|~y(t1))P (Ck0
|~y(t0))

P (Ck2
Ck1

Ck0
) + r (4)

P (y(si)) is composed of the probability of the most likely
path through the modes of the model P̃ (y(si)) plus a term r
which contains the probability of all other path permutations.
Naturally, the P (y(si)) will be dominated by P̃ (y(si)), and
r tends to be very small. This is the reason, why we use in
the final goodness score only the dominant term P̃ (y(si)).
P (Cki |~y(ti)) is computed using Bayes rule. The prior P (Ck)
is set to the ratio |Ck|/(

∑
u |Cu|). The normalisation factor

P (~y(ti)) is constant. Since we are interested in the maximum
likelihood, we compute:

P (Cki |~y(ti)) =
P (~y(ti)|Cki)P (Cki)

P (~y(ti))

∼ P (~y(ti)|Cki)
|Cki |∑
u |Cu|

(5)

where |Cki | denotes the number of elements in Cki .
P (~y(ti)|Cki) is computed according to equation 2.

The joint probability P (Ck2
Ck1
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) is developed according

to
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)P (Ck0
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We simplify this equation by assuming a Markov constraint
of first order:

P (Ck2
Ck1

Ck0
) = P (Ck2

|Ck1
)P (Ck1

|Ck0
)P (Ck0

) (7)

To compute the conditional probabilities P (Ci|Cj), we need
to construct a transfer matrix from the training set. This can
be obtained by counting for each cluster Ci the number of
state changes and then normalise such that each line in the
state matrix sums to 1. The probabilistically inspired sequential
goodness score of equation 3 is computed using equations 4
to 7.

C. Measuring the quality of the model

K-means clustering is a popular tool for learning and model
generation because the user needs to provide only the number
of desired clusters [3], [7], [8]. K-means converges quickly to
a (locally) optimal solution. K-means clustering starts from a
number of randomly initialised cluster centers. Therefore, each
run produces a different sub-optimal solution. In cases where
the number of clusters is unknown, k-means can be run several
times with varying number of clusters. A difficult problem is
to rank the different k-means solutions and select the one that
is the most appropriate for the task. This section provides a
solution to this problem which is often neglected.

For a particular model (clustering solution) we can compute
the probability of a measurement belonging to the model.
To ensure that the computed probability is meaningful, the



model must be representative. A good model assigns a high
probability to a typical trajectory and a low probability to
an unusual trajectory. Based on these notions we define an
evaluation criteria for measuring the quality of the model.
We need to have a model that is neither too simple nor
too complex. The complexity is related to the number of
clusters [1]. A high number of clusters tends to over-fitting and
a low number of clusters provides an imprecise description.

Model quality evaluation requires a positive and negative
example set. Typical target trajectories (positive examples)
are provided within the training data. It is more difficult
to create a negative example. A negative example trajectory
is constructed as follows. First we measure the mean and
variance of all training data. This represents the distribution
of the data. We can now generate random measurements
by drawing from this distribution with a random number
generator. The result is a set of random measurements. From
the training set, we generate a k-means clustering with a large
number of clusters (K=100). For each random measurement
we compute p(~y(ti)|model100). From the original random
5000 measurements we keep the 1200 measurements with the
lowest probability. This gives the set of negative examples.
Figure 4 shows an example of the positive and negative
trajectory as well as the hand labelled ground truth and a
multi-modal model obtained by k-means with pruning.

For any positive and negative measurements we compute
the probability P (~y(ti)). Classification of the measurements
in positive and negative can be obtained by thresholding
this value. For a threshold d the classification error can be
computed according to equation 8. The optimal threshold,
d, separates positive from negative measurements with a
minimum classification error [1].

Pd(error) = P (x ∈ Rbad, Cpos) + P (x ∈ Rgood, Cbad) (8)

=

∫ d

0

p(x|Cgood)P (Cgood)dx+

∫ 1

d

p(x|Cbad)P (Cbad)dx

with Rbad = [0, d] and Rgood = [d, 1].
We search the optimal threshold d such that Pd(error) is

minimised. We operate on a histogram using logarithmic scale.
This has the advantage that the distribution of lower values is
sampled more densely. The optimal threshold d with minimum
classification error can be estimated precisely with the method.

This classification error P (error) is a measurement for the
quality of the cluster model. Furthermore, less complex models
should be preferred. For this reason we formulate the quality
constraint of clustering solutions as follows: the best clustering
has the lowest number of clusters and an error probability
P (error) < q with q = 1%. The values of q are chosen
depending on the task requirements. This measure is a fair
evaluation criteria which enables to choose the best model
among a set of k-means solutions.

D. Clustering results

We test two clustering methods: K-means and k-means with
pruning. The positive trajectory is a person walking across the
hall, the negative trajectory consists of 1200 measurements
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Fig. 5. A process for automatic parameter regulation.

constructed as described above. The training set consists
of 21000 hand labelled bounding boxes from 15 CAVIAR
sequences (see Figure 4).

Table I shows characteristics of the winning models with
highest quality defined by minimum classification error and
minimum number of clusters. The superiority of the k-means
with pruning is demonstrated by the results. For the constraint
P (error) < 1%, k-means with pruning requires only 20 or
19 clusters respectively whereas the classical k-means needs
a model of clusters to obtain the same error rate. The best
overall model is obtained for spatio-temporal measurements
using k-means with pruning.

IV. THE MODULE FOR AUTOMATIC PARAMETER
REGULATION

The task of the module for automatic regulation is to
determine a parameter setting that improves the performance
of the system. In the case of a detection and recognition
system, this corresponds to increasing the number of true
positives and reducing the number of false positives. For
this task, the module requires an evaluation function of the
current output, a strategy to choose a new parameter setting
and a subsequence which can be replayed to optimize the
performance.

A. Integration

When the parameter regulation module is switched on, the
system tries to find a parameter setting that performs better
than the current parameter setting on a subsequence that is
provided by the tracking system. The system uses one of the
goodness scores of section III-B.

In the experiments we use a subsequence of 200 frames for
auto-regulation. The tracker is run several times with changing
parameter settings on this subsequence and the goodness score
of the trajectory is measured for each parameter setting. The
parameter setting that produces the highest goodness score
is kept. Parameter settings are obtained from a parameter
space exploration tool whose strategies are explained in the
section IV-B and IV-C.

The automatic regulation can only operate on sequences that
produce a trajectory (something observable must happen in
the scene). To allow a fair comparison, the regulation module
must process the same subsequence several times. For this
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Fig. 4. Ground truth labelling for the entrance hall scenario, examples of typical and unusual trajectories and clustering result using k-means
with pruning.

Measurement type Clustering method # clusters optimal threshold d P (error)
Spatial K-means 35 0.0067380 0.0007

K-means with pruning 20 0.0067380 0.0061
Spatio-temporal K-means 35 0.00012341 0.0013

K-means with pruning 19 0.00012341 0.0034

TABLE I
BEST MODEL REPRESENTATIONS AND THEIR CHARACTERISTICS (FINAL NUMBER OF CLUSTERS, OPTIMAL THRESHOLD, AND CLASSIFICATION ERROR).

reason the regulation process requires a significant amount of
computing power. As a consequence, the regulation module
should be run on a different host such that the regulation does
not slow down the real time tracking.

B. Parameter space exploration tool

To solve the problem of the parameter space exploration we
propose a parameter exploration tool that provides the next
parameter setting to the regulation module. The dimensions
of the parameter space as well as a reasonable range of the
parameter values are given by the user. In our tracking example
the parameter space is spanned by detection energy, density,
sensitivity, split coefficient, α, and area threshold.

In the experiments we tested two strategies for parameter
setting selection. An enumerative method, that defines a small
number of discrete values for each parameter. At each call the
parameter space exploration tool provides the next parameter
setting in the list. The disadvantage of this method is that only
a small number of settings can be tested and the best setting
may not be in the predefined list. The second strategy for
parameter space exploration is based on a genetic algorithm.
We found genetic algorithms perfectly adapted to our problem.
It enables feedback from the performance of previous settings.
We have a high dimensional feature space which makes hill
climbing methods costly, whereas genetic algorithms explore
the space without need of a high dimensional surface analysis.

C. Genetic algorithm for parameter space exploration

Among the different optimization schemes that exist we are
looking for a particular method, that fulfills several constraints.
We are not requiring to reach a global maximum of our func-
tion, but we would like to reach a good level of performance
quickly. Furthermore we are not particularly interested in the
shape of the surface in parameter space. We are only interested

in obtaining a good payoff with a small number of tests.
According to Goldberg [6], these are exactly the constraints of
an application for which genetic algorithms are appropriate.

Hill climbing methods are not feasible because the estima-
tion of the gradient of a single point in a 6 dimensional space
requires 26 tests. Testing several points would therefore require
a higher number of tests than we would like.

Genetic algorithms are inspired by the mechanics of natural
selection. Genetic algorithms require an objective function to
evaluate the performance of an individual and a coding of the
input variables. Typically the coding is a binary string. In our
example, each parameter is represented by 5 bit, which gives
an input string of length 30.

Genetic algorithms have three major operators: reproduc-
tion, crossover and mutation. Reproduction is a process in
which individuals are copied according to their objective
function values. Those individuals with high performance are
copied more often than those with low performance. After
reproduction, crossover is performed as follows. First, pairs
of individuals are selected at random. Then, a position k
within the string of length l is selected at random. Two new
individuals are created by swapping all characters of position
k+ 1 to l. The mutation operator selects at random a position
within the string and swaps its value.

The power of genetic algorithms comes from the fact, that
individuals with good performance are selected for reproduc-
tion and crossing of high performance individuals speculates
on generating new ideas from high performance elements of
past trials.

For the initialisation of the genetic algorithm, the user
needs to specify the boundaries of the input variable space,
coding of the input variables, the size of the initial population
and the probability of crossover and mutation. Goldberg [6]
proposes to use a moderate population size, a high cross over



probability and a low mutation probability. The coding of the
input variables should use the smallest alphabet that allows to
express the problem. In the experiment we use a population of
size 16, we estimate 7 generations, the crossover probability
is set to 0.6 and the mutation probability to 0.03.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the proposed approach on the
CAVIAR entry hall sequences1. The system is evaluated by
recall and precision of the targets compared to the hand-
labelled ground truth.

recall =
true positives
total # targets

(9)

precision =
true positives

(true positives + false positives)
(10)

We use the results of the manual adaptation as an upper
benchmark. These results were obtained by a human expert
who processed several times the sequences and hand tuned the
parameters. Quickly the expert gained experience which kind
of tracking errors depend on which parameter. The automatic
regulation module does not use this kind of knowledge. For
this reason, the recall and precision of the manual adaptation
is the best we can hope to reach with an automatic method.
We do not have manual adapted parameters for all sequences,
due to the repetitive and time consuming manual task.

A lower benchmark is provided by the tracking results that
do no adaptation. This means all 5 sequences are evaluated
using the same parameter setting. Choosing parameters with
high values2 produce little recall and bad precision. Choosing
parameters with low values3 increase the recall but the very
large number of false positives is not acceptable.

Table II shows the tracking results using a spatial and a
spatio-temporal model and two parameter space exploration
schemes. The first uses a brute force search (enumerative
method) of the discrete parameter space composed of the
discrete values for detection energy ∈ [20, 30, 40], density
∈ [5, 15, 25], sensitivity ∈ [0, 20, 30, 40], split coefficient =
2.0, α = 0.001, area threshold = 1500. The method tests
36 parameter settings. The second exploration scheme uses
a genetic algorithm as described in section IV-C.

The enumerative method has several disadvantages, that
are reflected by the rather low performance measurements
of the experiments. The sampling of the parameter space is
coarse and therefore it happens frequently that none of the
parameter settings provide an acceptable improvement. The
same arguments are true for random sampling of the parameter
space.

The spatial model using brute force method and the simple
score has a small recall, but a better precision than the lower
benchmark. The spatio-temporal measurements using the same

1available at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
2detection energy=30, density=15, sensitivity=30, split coefficient=1.0, α =

0.01, and area threshold=1500
3detection energy=10, density=15, sensitivity=20, split coefficient=2.0, α =

0.01, and area threshold=1500

parameter selection and evaluation measure produces superior
results (higher recall and higher precision). This seems to
be related to the spatio-temporal model. The precision can
be further improved using the genetic approach and the
more complex evaluation function (recall 39.7% and precision
78.8%).

VI. CONCLUSIONS AND OUTLOOK

We presented an architecture for a tracking system that uses
an auto-critical function to judge its own performance and an
automatic parameter regulation module for parameter adapta-
tion. This system opens the way to self-adaptive systems which
can operate under difficult lighting conditions. We applied our
approach to tracking systems, but the same approach can be
used to increase the performance of other systems who depend
of a set of parameters.

An auto-critical function and a parameter regulation module
require a reliable performance evaluation measure. In our case,
this measure is computed as a divergence of the observed
measurements with respect to a scene reference model. We
proposed an approach for the generation of such a scene
reference model and developed a measure that is based on
the measurement likelihood.

With this measure, we can compute a best parameter setting
for pre-stored sequences. The experiments show that the auto-
regulation greatly enhances the performance of the tracking
output compared to a tracking without auto-regulation. The
system can not quite reach the performance of a human expert,
who uses knowledge based on the type of tracking errors for
parameter tuning. This kind of knowledge is not available to
our system.

The implementation of the auto-critical function can trigger
the automatic parameter regulation. First successful tests have
been made to host the system on a distributed system. The
advantages of the distributed system architecture is that the
tracking system can continue the real time tracking. There
rests the problem of re-initialisation of the tracker. Currently,
existing targets are destroyed when the tracker is reinitialised.

The current model relies entirely on ground truth labelling.
The success of the method strongly depends on the quality of
the model. In many cases, a small number of hand labelled
trajectories can be gathered, but often their number is not
sufficient for the creation of a valid model. For such cases
we envision an incremental modeling approach by generating
an initial model from few hand-labelled sequences. The initial
model is then used to filter the tracking results, such that they
are error free. These error free trajectories are then used to
refine the model. This corresponds to a feed back loop in
model generation. After a small number of iterations a valid
model should be obtained. The option of such an incremental
model is essential for non-static scenes.
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Auto-regulation method Recall Precision Total # true false
targets positives positives

Manual adaptation (benchmark) 49.7 91.0 23180 11520 1136
Spatio-temporal model, 39.7 78.8 21564 8556 2304
(genetic approach,Gseq(10))
Spatio temporal model, 39.4 73.2 21564 8492 3108
(genetic approach, simple score G)
Spatio temporal model, 38.1 72.2 21564 8224 3160
(brute force, simple score G)
Spatial model, 29.2 68.7 21564 6302 2872
(brute force, simple score G)
No adaptation (low thresholds) 68.0 24.5 21564 14672 45131
No adaptation (high thresholds) 28.3 47.5 21564 6109 6746

TABLE II
PRECISION AND RECALL OF THE DIFFERENT METHODS EVALUATED FOR 5 CAVIAR SEQUENCES (OVERLAP REQUIREMENT 50%).
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