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ABSTRACT

This paper describes a new algorithm for the recognition of human
activities. These activities are modelled using banks of switched
dynamical models, each of which is tailored to a specific motion
regime. Furthermore, it is assumed that model switching happens
according to a space-dependent Markov chain, i.e., some transi-
tions are more probable in specific regions of the image. Space
dependence allows the model to represent the interaction between
the person and static elements of the scene. The paper describes
learning algorithms for space-dependent switched dynamical mod-
els and presents experimental results with synthetic and real data.

1. INTRODUCTION

The analysis of human activities is a key step in several appli-
cations of video processing, such as human-machine interaction,
video surveillance, and smart rooms [1]. The problem has been ad-
dressed using different representations of the human body. Some
works represent the human body as a set of segments and try to
characterize the position of each segment during the video se-
quence [2, 3]; activities (e.g., walking) are then characterized from
physiological parameters. However, estimation of articulated mod-
els of the full human body remains a difficult task which has not
been solved in a robust way. Many authors try to represent the hu-
man body and its evolution during the video sequence without seg-
menting it; the body is either represented by a deformable contour
[4], by templates [5], or simply by a single blob [6]. In the latter
case, the human activity is characterized by the evolution (trajec-
tory) of a reference point (e.g., center of mass) in the video se-
quence. Activity recognition from trajectories has been addressed
using statistical models, e.g., hidden Markov models (HMMs),
coupled hidden Markov models (CHMMs) [6], or Bayesian net-
works [7].

In this paper, we represent the human activity by the trajec-
tory of the centroid, as in other previous publications, since it is
a robust and sufficient feature for many applications. The evo-
lution of the centroid in each activity is then represented using a
dynamical model. Unfortunately, a single model is not enough
to cope with complex trajectories (e.g., a person entering a shop).
Therefore, multiple models are used, and a switching mechanism
is considered. Furthermore, the switching probabilities should be
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space dependent in order to be able to represent the interaction be-
tween a person and the scene (e.g., people often change direction
close to the store entrance; see Fig. 1). Therefore, each activity
is characterized by a space-dependent switched dynamical model
(SDSDM).

In Section 2, we formally define the SDSDM. Then, in Section
3, we derive the learning method used to estimate the model pa-
rameters from the video stream. Activity recognition is addressed
in Section 4. Section 5 presents experimental results and Section
6 concludes the paper.

Fig. 1. Shopping mall with the area of interest.

2. ACTIVITY MODEL

We assume that the human activities of interest can be recognized
from the trajectory of each person on the image plane,x = (x1, ...,
xn), with xt ∈ IR2. Furthermore, we assume that this trajectory
is the output of a bank of switched dynamical systems of the form

xt = xt−1 + Tkt
+ wt, (1)

wherekt ∈ {1, ..., m} is the label of the active model at time in-
stantt, Tkt

is a (model-dependent) displacement vector, and the
wt ∼ N (0, Qkt

) are independent Gaussian random variables,
with (also model-dependent) covariancesQkt

.
We assume thatk = (k1, k2, . . . , kn) is a Markov sequence

with a space-dependent transition matrix, i.e., the transition prob-
abilities depend on the location of the person, i.e., onxt (see Fig.



Fig. 2. Architecture of the proposed SDSDM:kt - label model
(hidden variables);qt binary variable,xt state (observations).

2). For the sake of simplicity, the image plane is split into a set
of disjoint regionsRi, for i = 1, . . . , d, and a different transition
matrix Bi is assigned to each region. Fig. 1 shows an example in
which two regions are considered:R0, which accounts for the cor-
ridor, andR1, corresponding to the shop entrance in which most
model transitions occur. This idea can be formalized as follows.
Let qt be a discrete variable defined by the following deterministic
relation:

qt = p ⇔ xt ∈ Rp. (2)

Then, we will assume that

P (kt = j|kt−1 = i, qt−1 = p) = Bp(i, j). (3)

The relationship among the variablesx, k, q is represented by
the graphical model shown in Fig. 2, wherex = (x1, ...,xn) is
the observed trajectory,q = (q1, ..., qn) is simply a determinis-
tic function ofx, andk = (k1, k2, . . . , kn) is a hidden sequence.
This model depends on a set of parameters, denoted collectively
asθ = (T1, Q1, . . . , Tm, Qm, B1, . . . , Bd), which have to be es-
timated from data.

3. LEARNING ALGORITHM

Due to the conditional dependence ofkt, not only onkt−1, but also
on xt−1 (via qt−1), the standardBaum-Welch algorithm(BWA)
[8] is not directly applicable to learn the parameters of this model.
In this section, we present a modified BWA, tailored to the model
described in the previous section. Just as the BWA is simply an
instance of the expectation-maximization (EM) algorithm [9] to
estimate the parameters of a standard HMM, our algorithm is EM
applied to the model described in the previous section.

The complete log-likelihood functionL(θ) = log p(x, k | θ),
assuming that all the variables were observed, is given by

L(θ) =

n
∑

t=2

{

log p(xt|xt−1, kt) + log Bqt−1
(kt−1, kt)

}

+ L1,

(4)
whereL1 = log p(x1, k1), which we admit known to simplify
the notation. Also to simplify the notation, we omit the explicit
dependency onθ of the right hand side of (4), and of most other
equations in this section. The EM algorithm produces a sequence
of parameter estimateŝθ1, . . . , θ̂s, θs+1, . . . by iteratively maxi-
mizing an auxiliary function,

θ̂s+1 = arg max
θ

Q(θ; θ̂s), (5)

whereQ(θ; θ̂s) is the conditional expectation of the complete log-
likelihood, with respect to the hidden sequencek, given the current

parameter estimateŝθs = (T̂ s
1 , Q̂s

1, . . . , T̂
s
m, Q̂s

m, B̂s
1 , . . . , B̂s

d),
and the observed sequencex; that is,

Q(θ; θ̂s) = Ek

{

log p(x, k | θ) | x, θ̂s
}

. (6)

The conditional probability of the hidden state sequencek,
givenx andθ̂s, necessary to obtainQ(θ; θ̂s), is computed in the E-
step. This is carried out, as in the BWA, in two recursions, forward
and backward, leading top(kt|x

t
1), p(kt−1|x) andP (kt−1, kt|x),

with the notationxt
1 = (x1, . . . ,xt).

Forward recursion: theprediction stepis given by

P (kt = j|xt−1

1 ) =

m
∑

i=1

B̂s
qt−1

(i, j)P (kt−1 = i|xt−1

1 ), (7)

whereqt−1 is defined in (2). Thefiltering stepis given by

P (kt = j|xt
1) =

P (xt|kt = j,xt−1)P (kt = j|xt−1

1 )
m

∑

i=1

P (xt|kt = j,xt−1)P (kt = j|xt−1

1 )

. (8)

Backward recursion: Here the goal is to obtainP (kt−1, kt|x)
andP (kt|x), which is done following

P (kt−1 = i, kt = j|x) = P (kt−1 = i|kt = j,x)P (kt = j|x)

= B̂s
qt−1

(i, j)
P (kt−1 = i|xt−1

1 )P (kt = j|x)

P (kt = j | xt−1

1 )
. (9)

and

P (kt−1 = i|x) =

m
∑

j=1

P (kt−1 = i, kt = j|x)

= P (kt−1 = i|xt−1

1 )

m
∑

j=1

B̂s
qt−1

(i, j)P (kt = j|x)

P (kt = j|xt−1

1 )
. (10)

Recall that all probabilities in (7)–(10) are conditioned onθ̂s.
Equation (6) can be now be written straightforwardly as

Q(θ; θ̂s) =

n
∑

t=2

m
∑

i=1

P (kt = i|x, θ̂s) log p(xt|kt = i,xt−1, θ)

+

n
∑

t=2

m
∑

i=1

m
∑

j=1

P (kt = i, kt−1 = j|x, θ̂s) log Bqt−1
(i, j),

leading to

Q(θ; θ̂s) =

n
∑

t=2

m
∑

i=1

wt
i

(

−
1

2
log det(Qs

i ) −
1

2
(νt

i )
T (Qs

i )
−1 νt

i

)

+

n
∑

t=2

m
∑

i=1

m
∑

j=1

wt
ij log Bqt−1

(i, j), (11)

wherewt
i = P (kt = i|x, θ̂s), wt

ij = P (kt = i, kt−1 = j|x, θ̂s)

andνt
i = xt − xt−1 − T̂ s

i is the prediction error.
DenotingT = (T1, . . . , Tm), Q = (Q1, . . . , Qm), andB =

(B1, ..., Bd), it’s clear that (11) can be maximized separately with
respect toB and the pair(T,Q). After straightforward manipula-
tion, we obtain

B̂s+1
p = normalize-rows(Ap) (12)



wherenormalize-rows(·) is an operator that normalizes each row
of a matrix with non-negative entries, to guarantee that it is a valid
stochastic matrix, and

Ap(i, j) = α +
∑

t

wt
ij δp,qt

, (13)

with α a small regularization constant, andδp,qt
the Kronecker

delta function, i.e.,δp,qt
= 1, if qt = p, and zero otherwise.

The regularization constantα is necessary because we observe a
very small number (typically zero or one) of model transitions.
The other parameters,(T,Q), are updated according to standard
rules of the BWA, and we refer the reader to [8] for details; no-
tice that (11), with respect to(T,Q), is formally equivalent to
the Q-function in the EM algorithm for estimating a mixture ofm
Gaussians [9].

Summarizing, the EM algorithm comprises two steps in each
iteration: the E-step, which computes the probabilities of the hid-
den variables, using (7)-(10), and the M-step in which parameter
estimates are updated. All these equations are trivially extended to
the case where, instead of one sequence, we have a set of observed
sequences. For the sake of simplicity, we omit these details.

4. CLASSIFICATION

Let A = {A1, . . . , Al} be the set of activities according to which
we want to classify the observed trajectories. A switched dynami-
cal modelθi, is estimated from the data for each activityAi, using
the EM algorithm described in Section 3.

The classification of a new sequencex is obtained by themax-
imum a posteriori(MAP) rule

j = arg max
i

{p(x|θ̂i)p(Ai)}; (14)

in this paper we consider uniform prior probabilitiesp(Ai) = 1/l.
To compute (14), we observe that

p(x | θ̂i) = p(x1, . . . ,xn|θ̂i)

=

n
∏

t=2

p(xt | x
t−1

1 , θ̂i)p(x1|θ̂i);
(15)

since each term ofp(x | θ̂i) is given by

p(xt|x
t−1

1 , θ̂i) =

m
∑

i=1

P (xt|kt = i,xt−1, θ̂i)P (kt = i|xt−1

1 , θ̂i),

the observed likelihood can be computed from the denominator
of (8). Thus, given a new sequencex, we run one half iteration
(the forward recursion) of the E-step under all candidate classes
{A1, . . . , Al}. This gives us{p(x|θ̂i), i = 1, . . . , l}. The most
likely class is then simply

arg max
i

{p(x|θ̂i)} i = 1, . . . , l. (16)

5. EXPERIMENTAL RESULTS

This section presents experimental results using synthetic and real
data. In the synthetic case, we have considered a bank of SDSDM
and performed Monte Carlo tests. We have defined four classes
(l = 4) which represent typical activities performed by humans

in shopping malls: entering shop, leaving the shop, passing, and
browsing. Each of the four activities is represented by the cor-
responding parameter estimatesθ̂i, i = 1, 2, 3, 4, obtained using
the EM algorithm described in Section 3, from sample trajecto-
ries generated according to (1). For all the activities, we assume
two dynamical models, i.e.,m = 2. Several sample trajectories
of each activity are shown in Fig. 3. This figure depicts a store
entrance and a corridor. The dashed square represents the area of
interest,R1, where state switching is more probable to occur. We
have also generated 100 sequences of each activity to be used as
test data. All the test sequences were correctly classified (100%
accuracy).

(a) (b)

(c) (d)

Fig. 3. Several synthetic activities considered: (a) entering, (b)
leaving, (c) passing, (d) browsing.

The proposed algorithm was also tested with real data col-
lected in the context of the EU funded project CAVIAR. The data
was collected and the ground truth was hand-labelled for 40 video
sequences comprising about 90K frames.1 These sequences in-
clude indoor plaza and shopping center observations of individu-
als and small groups of people. The sequences are labelled with
both the tracked persons and also a semantic description of their
activities. Fig. 4 shows several real trajectories of the centroid of
the bounding box of each person. To obtain the results shown in
Table 1, two movies of 5 minutes each were selected:TwoEnter-
Shop1FrontandTwoEnterShop2Front. To test the performance of
the algorithm, all the activities presented in the first one were used
for training. The seven activities contained in the second movie
(three “passings”, two “enterings”, and two “leavings”) were con-
sidered as test samples to be classified. Table 1 shows the log-
likelihood of each learned model for each activity of the test se-
quence; we can see that all the trajectories were correctly classi-
fied, that is, they exhibit the highest log-likelihood for the correct
class.

1The ground truth labelled video sequences is provided at
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.



Test trajectories
Input

Activities P1 P2 P3 E1 E2 L1 L2

P -519.1 -686.5 -546.8 -1542.4 -1559.0 -1737.1 -1752.0
E -605.1 -690.6 -567.7 -450.1 -361.1 -651.2 -632.3
L -1175.3 -1261.8 -1127.2 -921.8 -814.3 -424.2 -332.7

Table 1. Log-likelihood classification of real activities:E- entering,L-leaving,P - passing.

6. CONCLUDING REMARKS

In this paper we have proposed and tested an algorithm for mod-
elling and recognizing human activities in a constrained environ-
ment. The proposed approach uses a switched dynamical model
in which model switching depends on the space variable. It is
demonstrated that the proposed model provides good results with
synthetic and real data obtained in a commercial center. The pro-
posed method is able to effectively recognize instances of learned
activities. The activities studied herein can be interpreted as atomic
ones, in the sense that they are simple events. We plan to conduct
more extensive tests and to represent complex behaviors as con-
catenations of the activities studied in the paper.

Acknowledgement: We would like to thank Prof. José Santos
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