An Architecture for Context Aware Observation of Human Activity

James L. Crowley, Patrick Reignier
Project PRIMA, INRIA Rhone Alpes,
655 Ave de I'Europe, F-38334 Montbonnot, France

1. Introduction

We describe a process-based software architecture for context
aware observation of human activity. This model builds on
recent work on architectures for machine perception and
computer vision [1], [2], as well as on data flow models for
software architectures [3]. The basic components of this
model are modules, defined as transformations of
observations. Modules are assembled into reflexive processes
under the direction of a supervisory controller. Federations
of processes are dynamically assembled [4], [5] according to
a model of the activities to be observed. This model is based
on an ontology for context aware systems described in [6].

2. Modules

The basic component of our architecture is a software module.
A module is defined by a transformation controlled by a set
of parameters. A module returns a description of the results of
processing in the form of a state vector.

Parameters l T State

—> Events
— Data

Events —|

Transformation
Data —|

Fig. 1. A module transforms data and events according to
control parameters.

The input is generally composed of some raw numerical
values, generally arriving in a synchronous stream,
accompanied by meta-data. Meta-data may be information
such as a time-stamp, a confidence factor, a priority or a
description of precision. However, modules may also process
events. An input event is a symbolic message that can arrive
asynchronously and that may be used as a signal to begin or
terminate the transformation of the input data. Output data
and the associated meta-data is a synchronous stream
produced from the transformation of the input data. We also
allow the possibility of generating asynchronous output
messages that may serve as events for other processes.

ROI]
Look up Tablei 1 Skin Detected?
Skin Color .
Color —> Detection Skin .
Image Probability

Fig 2. A module for detecting skin pixels

A simple example of a module is provided by a
transformation that uses a look-up table to convert color
pixels into a probabilities that the pixels are skin, as
illustrated in figure 2. Such a table can easily be defined
using the ratio of a histograms of skin colored pixels in a
training image, divided by the histogram of all pixels in the
same image [7]. Computation time for this process may be
reduced by restricting processing to a rectangular “Region of
Interest” or ROI.

A grouping module collects regions of detected pixels
into "blobs" described by a vector of properties. An example
is provided by a module that groups probabilities into
regions (commonly called blobs) using moments, as shown
in figure 3. In this module, the detection mass is the sum of
the probabilities in the ROI. The first moment is the center of
gravity in the row and column directions. This is a robust
indicator of the position of the skin colored blob. The second
moment is a covariance matrix. The square root of the
principle components are the length and width of the region.
The principal vector indicates the dominant direction of the
region. Principal components analysis of the covariance
matrix formed from s;%, sj%and sj® yield the length and
breadth of the blob (s, sy) as well as its orientation q.

ROI L T Blob Detected

Moment Based

- , [y
Probability Image Grouping (Blob, ID, CF.x, y,'s,, S, 0)

Fig 3. A module for grouping detected pixelsinto blobs.

Tracking blobs provides a number of interesting benefits.
Tracking preserves information over time. For example, with
tracking, it is only necessary to recognize a blob once.
Tracking also makes it possible to compose a history of the
positions of an blob. Finally, tracking can be used to reduce
computation by focusing attention. The position predicted
by tracking may be used to specify the ROI for detection and
grouping.

Tracking is a process of recursive estimation, generally
implemented as a Kalman filter. A general discussion of the
use of the Kalman filter for sensor fusion is given in [8]. The
use of the Kalman filter for tracking faces is described in [9].
For face tracking we commonly use a simple zeroth order
Kalman filter, in which the observation and estimation state
vectors are each composed of (X, Y, Sx, Sy, Q).

These three modules for skin detection, blob grouping and
blob tracking could easily be combined into a cyclic data-
flow process. However, such a process would lack a
mechanism to initiate tracking, to initialize the parameters,
and to globally adapt parameters to maintain a desired
quality of service. These functions can be provided by
embedding the modules in a process controlled by a reflexive
supervisory controller.

3 Observational Processes

An observational process is composed of an assembly of
modules governed by a control component, as illustrated in
figure 4. The control component interprets commands and
parameters, supervises the execution of the transformation
components, and responds to queries with a description of
the current state and capabilities of the process. This model is
similar to that of a contextor [10], which is a conceptual
extension of the context widget implemented in the Context
Toolkit [11].

State and

Control |n¢ capabilities

Control

Events —>|
Data —>|

—> Events

Transformation
— Data

Fig. 4. Anobservational process transforms data and events
under the direction of areflexive controller.

Dynamic assembly and control of observational processes
requires information about the capabilities and the current
state of component processes. Such information can be
provided by providing the controller with the capabilities of
auto-regulation, auto-description and auto-criticism.

A process is auto-regulated when processing is monitored
and controlled so as to maintain a certain quality of service.
For example, processing time and precision are two important
state variables for a tracking process. These two parameters
may be traded off against each other. The process controllers
may be instructed to give priority to either the processing
rate or precision. The choice of priority is dictated by a more
abstract supervisory controller.

An auto-descriptive process provides a symbolic
description of its capabilities and state. The description of
the capabilities may include either the basic command set of
the controller or a set of services that the controller may
provide to a more abstract meta-controller.

An auto-critical process maintains an estimate of the
confidence for its outputs. Associating a confidence factor to
observations allows a higher-level controller to detect and
adapt to changing observational circumstances. When
supervisory controllers are programmed to offer “services” to
higher-level meta-controllers, it can be very useful to include
an estimate of the confidence for the role. A higher-level
meta-controller can compare these responses from several
processes and determine the assignment of roles to processes.

The skin blob observer, shown in figure 5, provides an
example of an observational process. A supervisory
controller, labeled as “skin blob tracker” invokes and
coordinates modules for skin detection, pixel moment
grouping and tracking. The module state describes the
number of blobs being tracked as well as information about
the current processing cycle time and precision. In our system
we have implemented the control component using an
interpreter for the scheme (lisp) programming language, thus
allowing code snippets to be downloaded and added to the
module's capabilities

Commands } state
Initialisation Capabilities
Skin
Blob Tracking
ROI I
Init Result ROl Result Params Result
v ROI
Color Skin
Image Detection) Blob Grouping — Tracking |— 5

Skin Probability blob blobs

Position and Size

Fig. 5. An process for observing skin colored blobs.

4. Observing Entities and Relations
A fundamental aspect of interpreting sensory observations is
grouping observations to form entities. Entities may

generally be understood as corresponding to physical
objects. However, from the perspective of the system, an
entity is an association of correlated observable variables.
This association is commonly provided by an observational
process that groups variables based on spatial co-location.
Correlation may also be based on temporal location or other,
more abstract relations. We define an entity as a predicate
function of one or more observations, provided by an entity
grouping process.

We define a situation as a configuration of entities and
their relations. Relations are defined as a predicate of the
properties of entities. Relations that are important for
describing human context include 2D and 3D spatial
relations, as well as temporal relations [12]. Other sorts of
relations, such as acoustic relations (e.g. louder, sharper),
photometric relations (e.g. brighter, greener), or even abstract
geometric relations may also be defined. A relation-
observation processes may be defined as transformation on a
set of entities that outputs relations based on their properties.
This transformation may generate asynchronous symbolic
messages that can serve as asynchronous events.

5. Composing Process Feder ations.

We propose to dynamically compose federations of
processes to observe the situations that make up a context
using a hierarchy of supervisory meta-controllers. Each
supervisory meta-controller invokes and controls lower level
controllers that perform the required transformation. At the
lowest level are observational processes that observe
variables, group observational variables into entities, track
entities and observe the relations between entities.

$ T State and Capabilities

Supervisory Controller

Control Out $$¢$ State and Capabilities

Fig. 6. A supervisory meta-controller uses observational
process to associate entities with roles and to determine the
relations between entities.

Control in

An example of a process federation is a federation for
tracking faces, illustrated in figure 7. A skin colored region
of a certain size, aspect ratio and orientation, may potentially
be a face. To determine if such a region is a face, a face
detection controller may apply a test to the length, breadth
and orientation of the skin colored region. A confidence that
the region is a face can be used by a supervisory meta-
controller to detect and initiate tracking of the user’s face.

Face Tracker
Supervisory Controller
Skin Blob Eye-Pair T
Detector detector
fusion

Fig. 7. A federation of processes to track faces.

Entity

— Tracker

If the region’s properties pass the acceptance test, then
observational processes for detecting eyes may be applied
within the ROI defined for the face. Detected eye entities may
be fed to a relation test for an “eye-pair” detector. The eye-
pair detector and the skin blob are then fused to form a face
entity. This face entity is tracked using a Kalman filter based

entity tracker. The result is a face detection controller that
recruits skin colored regions to play the role of face, and then
applies a further test to validate the face hypothesis, as shown
in figure 7.

6. Context and Situation.

We propose to use a model of context to direct the
assembly of process federations. Early researchers in both
artificial intelligence and computer vision recognized the
importance of context. The “Scripts” representation [13]
sought to provide just such information for understanding
stories. Minsky’s Frames [14] sought to provide the default
information for transforming an image of a scene into a
linguistic description. Semantic Networks [15] sought to
provide a similar foundation for natural language
understanding. All of these were examples of what might be
called “schema” [16].

In computer vision, the tradition of using context to
provide a framework for meaning paralleled and drew from
theories in artificial intelligence. A central component of the
“Visions System” [17] was the notion of a hierarchical
pyramid structure for providing context. Such pyramids
successively transformed highly abstract symbols for global
context into successively finer and more local context
terminating in local image neighborhood descriptions that
labeled uniform regions. Reasoning in this system worked by
integrating top-down hypotheses with bottom-up
recognition. Building a general computing structure for such
a system became a grand challenge for computer vision.
Successive generations of such systems, such as the “Schema
System” [18] and “Condor” [19] floundered on problems of
unreliable image description and computational complexity.

Winograd [20] points out that the word “Context” has
been adapted from linguistics. Composed of “con” (with) and
“text”, context refers to the meaning that must be inferred
from the adjacent text. Such meaning ranges from the
references intended for indefinite articles such as “it” and
“that” to the shared reference frame of ideas and objects that
are suggested by a text. Context goes beyond immediate
binding of articles to the establishment of a framework for
communication based on shared experience. Such a shared
framework provides a collection of roles and relations with
which to organize meaning for a phrase.

We define context as a composition of situations relative to
a task. The situation within context share the same set of roles
and relations. Thus a context determines the collection of
roles and relations to observe. These are the roles and
relations that are relevant to the task.

Context(U,T): {Role;, Roley,...,Role,; Relationy,...,Relationm}

Arole is potential for action within a task. The actions of a
role may be enabled by certain entities. When an entity
enables the actions of a role, it is said to be able to “play” the
role. An entity is judged to be capable of playing a role if it
passes an acceptance test based on its properties. For
example, a horizontal surface may serve as a seat if it is
sufficiently large and solid to support the user, and is located
at a suitable height above the floor.

The set of entities that can provide a role may be open
ended. In the system’s context model, entities are assigned to
roles when they pass an acceptance test. Such assignment is
provided by a process that applies a predicate function
defined over entities and their properties.

Role(E1, B, ..., Em) : (Role-Class, ID, CF, Ej, E,..., En)

When the test is applied to multiple entities, the most
suitable entity may be selected based on a confidence factor,
CF.

The set of entities is not bijective with the set of roles. One
or more entities may play a role. A role may be played by one
or several entities. The assignment of entities to roles may
(often will) change dynamically. Such changes provide the
basis for an important class of events.

A situation is a particular assignment of entities to roles
completed by a set of relations between the entities. Situation
may be seen as the “state” of the scene with respect to the
task. The predicates that make up this state space are the roles
and relations determined by the context. If the relations
between entities changes, or if the binding of entities to roles
changes, then the situation within the context has changed.
The context and the state space remains the same.

Thus a context can be seen as a network of situations
defined in a common state space. A change in the relation
between entities, or a change in the assignment of entities to
roles is represented as a change in situation. Such changes in
situation constitute an important class of events that we call
Situation-Events. Situation-Events are data driven. The
system is able to interpret and respond to them using the
context model. They do not require a change in the federation
of observational processes. Situation events may be
contrasted with context events that do require a change to the
federation.

In order to compose processes, the higher level
supervisors recruit observational processes to form local
federations. These federations determine and track the entities
that may play roles in the users context, determines the
assignment of entities to roles, and determines the relations
between entities. The system’s task is to observe the roles and
relations of the user’s context. This defines a system context
in which observational processes perform functions, and thus
may be said to assume roles. A meta-supervisor observes the
state and capabilities of observational processes to determine
if they are most appropriate at the current time to provide the
required function.

A crucial problem with this model is how to provide a
mechanism for dynamically composing federations of
supervisory meta-controllers that observe the entities and
relations relative to the user’s context. Our approach is to
construct the meta-supervisors using a forward chaining rule
based system written in JESS (CLIPS in Java). Meta-
supervisors are designed for specific contexts. Meta-
supervisors maintains a model of the current user’s context.
This model includes information about adjacent contexts that
may be attained from the current context, as well as the user
and system context events that may signal such a change.

The meta-supervisor may be seen as a form of reactive
expert system. For each user context, it invokes and revokes
the corresponding highest-level meta-controllers. These
meta-controllers, in turn, invoke and revoke lower level
controllers, down to the level of the lowest level
observational processes. Meta-controllers may evoke
competing lower-level processes, informing each process of
the roles that it may play. The selection of process for a role
can then be re-assigned dynamically according to the quality
of service estimate that each process provides for its parent
meta-controller.

7. Conclusions

In this paper we have described our current approach to
building context aware systems for observing human
activity. A context in this system, is a network of situations
concerning a set of roles and relations. Roles are services or
functions relative to a task. Roles may be “played” by one or
more entities. A relation is a predicate defined over the
properties of entities. A situation is a particular assignment
of entities to roles completed by the values of the relations
between the entities. Entities and relations are predicates
defined over observable variables.

Acknowledgment

This work has been partly supported by the EC projects IST
FAME (IST-2000-28323) and CAVIAR (I1ST-2001-37540)

References

[1] J. L. Crowley, "Integration and Control of Reactive
Visual Processes”, Robotics and Autonomous
Systems, Vol 15, No. 1, décembre 1995.

[2] J. Rasure et S. Kubica, “The Khoros application
development environment“, in Experimental
Environments for computer vision and image
processing, H. Christensen et J. L. Crowley, Eds,
World Scientific Press, pp 1-32, 1994.

[3] M. Shaw and D. Garlan, Software Architecture:
Perspectives on_an Emerging Disciplines, Prentice
Hall, 1996.

[4] Software Process Modeling and Technology, edited
by A. Finkelstein, J. Kramer and B. Nuseibeh, Research
Studies Press, John Wiley and Sons Inc, 1994.

[5] J. Estublier, P.Y.Cunin, N. Belkhatir, "Architectures
for Process Support Ineroperability”, ICSP5,Chicago,
15-17 juin, 1997.

[6] J. L. Crowley, J. Coutaz, G. Rey and P. Reignier,
"Perceptual Components for Context Aware
Computing", UBICOMP 2002, International
Conference on Ubiquitous Computing, Goteborg,
Sweden, September 2002.

[7] K. Schwerdt and J. L. Crowley, "Robust Face Tracking

using Color", 4t JEEE International Conference on
Automatic Face and Gesture Recognition", Grenoble,
France, March 2000.

[8] J. L. Crowley and Y. Demazeau, “Principles and
Techniques for Sensor Data Fusion“, Signal
Processing, Vol 32 Nos 1-2, p5-27, May 1993.

[9] J. L. Crowley and F. Berard, "Multi-Modal Tracking of
Faces for Video Communications", IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
'97, St. Juan, Puerto Rico, June 1997.

[10] J. Coutaz and G. Rey, “Foundations for a Theory of
Contextors”, in Computer Aided Design of User
Interfaces, Springer Verlag , June 2002.

[11] D. Salber, A.K. Dey, G. Abowd. The Context Toolkit:
Aiding the development of context-enabled
Applications. In Proc. CHI99, ACM Publ., 1999, pp.
434-441.

[12] J. Allen, "Maintaining Knowledge about Temporal
Intervals”, Journal of the ACM, 26 (11) 1983.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

R. C. Schank and R. P. Abelson, Scripts, Plans, Goals
and Understanding, Lawrence Erlbaum Associates,
Hillsdale, New Jersey, 1977.

M. Minsky, "A Framework for Representing
Knowledge", in: The Psychology of Computer Vision,
P. Winston, Ed., McGraw Hill, New York, 1975.

M. R. Quillian, "Semantic Memory", in Semantic
Information Processing, Ed: M. Minsky, MIT Press,
Cambridge, May, 1968.

D. Bobrow: "An Overview of KRL", Cognitive Science
1(1), 1977.

A. R. Hanson, and E. M. Riseman, , VISIONS: A
Computer Vision System for Interpreting Scenes, in
Computer Vision Systems, AR. Hanson & E.M.
Riseman, Academic Press, New York, N.Y., pp. 303-
334, 1978.

B. A.Draper, R. T. Collins, J. Brolio, A. R. Hansen, and
E. M. Riseman, "The Schema System", International
Journal of Computer Vision, Kluwer, 2(3), Jan 1989.
M.A. Fischler & T.A. Strat. Recognising objects in a
Natural Environment; A Contextual Vision System
(CVS). DARPA Image Understanding Workshop,
Morgan Kauffman, Los Angeles, CA. pp. 774-797,
1989.

T. Winograd, “Architecture for Context”, Human
Computer Interaction, VVol. 16, pp401-419.

