
Joint sOc-EUSAI conference Grenoble, october 2005

p. XYZ

Supervised Learning of an Abstract Context Model for an Intelligent

Environment

Oliver Brdiczka, Patrick Reignier & James L. Crowley

GRAVIR/IMAG, 655 Av. de l'Europe - 38330 Montbonnot-St. Martin, France
{brdiczka, reignier, crowley}@inrialpes.fr

Abstract

This paper addresses the problem of supervised learning in

intelligent environments. An intelligent environment perceives

user activity and offers a number of services according to the

perceived information about the user. An abstract context

model in the form of a situation network is used to represent

the intelligent environment, its occupants and their activities.

The context model consists of situations, roles played by

entities and relations between these entities. The objective is

to adapt the system services, which are associated to the

situations of the model, to the changing needs of the user. For

this, a supervisor gives feedback by correcting system services

that are found to be inappropriate to user needs. The situation

network can be developed by exchanging the system service-

situation association, by splitting the situation, or by learning

new roles. The situation split is interpreted as a replacement of

the former situation by sub-situations whose number and

characteristics are determined using conceptual or decision

tree algorithms. Different algorithms have been tested on a

context model within the SmartOffice environment of the

PRIMA research group. The decision tree algorithm (ID3) has

been found to give the best results.

1. Introduction

An environment is called “perceptive” if it is capable of

maintaining a model of its occupants and their activities. An

environment becomes “active” when it is capable of

(re)actions (system services). An “interactive” environment is

based on the capacity of perception, (re)action and

communication with the users. “Intelligent” environments

should provide services while minimizing disruptions, such as

explicit man-machine communication. This requires that the

intelligent environment perceives user activities and identifies

user needs correctly in order to react in an appropriate way.

However, user needs and system services evolve in the course

of time. Further, different users may have different needs for

the same activities. Thus an intelligent environment must be

capable of adapting and developing its services automatically

to meet the specific needs of a user.

In this paper, we describe a method for evolving and

developing the abstract context model for an intelligent

environment. Our abstract context model is based on a

situation network. The situations of this network are altered

and split in order to meet changing user needs. These

evolutions of the model are intended to maximize the

correctness of the executed system services concerning the

user needs perceived by a supervisor.

2. Problem Statement

The problem addressed in this paper is machine learning in an

intelligent environment. The intelligent environment is a

computer system that executes a number of services

according to perceptual information on user actions or

activity. As we know, user behavior changes in the course of

time. The automatic adaptation of system (re)actions

according to changing user needs is seen as machine learning

process. We need information in the form of feedback on

executed system services in order to guide the learning

process. Further, we can define several qualities that this

machine learning process should have:

• Understandable Representation and Reasoning: We

consider that a user is only willing to accept an intelligent

environment offering services implicitly if he understands

and foresees its decisions. Thus we want the user to be able

to understand the system perceptions and their

representation in the model of the interactive environment.

Further, the learning process, i.e. the reasoning and the

development of the model necessary to cover changing

user needs, should also be understandable for the user.

• Supervisor corrections (feedback): We want to minimize

the frequency with which the system offers inappropriate

services, while minimizing disruption. This means that the

feedback given to the system is to be minimal to achieve

the wanted changes of system services. We assume that a

person, denoted supervisor in the following, is capable of

specifying system services to be executed by the system

and that his feedback is always consistent. The user himself

or another person can act as this supervisor. In this paper,

we distinguish three forms of supervisor feedback:

• (Re)action correction: the service or (re)action

executed by the system is wrong and a different

service must be executed instead. The supervisor

gives the different system (re)action as feedback to the

system. This includes the case where the supervisor

wants the system to execute a (re)action while the

system does not execute anything.

• (Re)action deletion: the service executed by the

system is wrong and no system service must be

executed instead. The supervisor gives a particular

(re)action, the “erase” (re)action, as feedback to the

system.

• (Re)action preservation: the service executed by the

system is correct. The supervisor does not give any

information to the system. As we assume that the

supervisor is always consistent, we can interpret the

Joint sOc-EUSAI conference Grenoble, october 2005

p. XYZ

absence of his corrections or deletions as positive

feedback for the currently executed system

(re)actions.

The supervisor will not give any further feedback on the

model representing the intelligent environment. The learning

process must integrate the information given on the system

(re)actions by evolving and developing the model.

3. Previous Approaches and Related Work

An early example of an interactive environment is the

KidsRoom [1], a perceptually-based, interactive, narrative

playspace for children. The KidsRoom environment interacts

with the children in order to narrate a story. It does not have,

however, any learning capacity concerning the automatic

development of its (re)actions. The perception modules and

the (re)actions in the environment are integrated in a

preprogrammed story context and need to be adapted by hand

(in general by a programmer).

The ContAct project [2] realized a system deriving user

activity and availability from sensor data in an office

environment. The system uses a naive Bayesian Classifier to

learn user activity and availability directly from sensor data

according to given user feedback. This system is, however,

only perceptive and not (inter)active as there are no

(re)actions defined or planned by the system. Further, no

understandable representation of the environment is provided.

The Lumiere project [3] at Microsoft Research realized

methods and an architecture for reasoning about the goals and

needs of software users as they work with software. The

objective is to learn appropriate interactions with the user

according to perceived user activities in order to offer

assistance within a software environment. At the heart of

Lumiere are Bayesian models, which are based on a large

amount of example data from users and experts. Although

these models could identify a number of (understandable)

pertinent variables of human behavior (like task history or

assistance history), their reasoning is not obvious to the user.

In this paper, we want to focus on an understandable

model of the environment whose initial construction can be

done by hand (without large amounts of example data). The

context model [4] is a non-Bayesian model inspired by

concepts of planning and knowledge representation used in

robotics and artificial intelligence. The central concept of this

model is the notion of situation. A situation refers to a

particular state of the environment. It is composed of a

particular configuration of entities, roles and relations (see

Fig. 1 for an example).

An entity may generally be understood as corresponding

to a physical object or person. It is created accompanied by a

set of numerical or symbolic properties. We say that an entity

is observed to play a role if it passes a role acceptance test on

its properties. This role acceptance test may be seen as a

predicate function defined over entities and their properties. A

person may, for example, play the role lecturer if he or she

stands next to the presentation screen, which is tested by

comparing the person's position to predefined values

(acceptance test).

Figure 1: Example of a context model for a lecture

room. Sit 0, Sit 1 and Sit 2 are the available situations.

Lecturer, Audience are the available roles and SameAs

the available relation. SwitchOnLight,

SwitchOnProjector are system (re)actions. E1 and E2

are entities.

A relation is defined as a predicate function on several

entities playing roles. The identity relation may, for example,

be created by comparing the names of two entities playing

different roles. A context is determined by the available roles

and relations. A situation stands for a particular assignment of

entities to roles completed by a set of relations between these

entities. Thus a change in the relations between entities or in

the assignment of entities to roles results in a change of

situation. This (possible) change of situation is represented by

an arc connecting these situations. The context can then be

represented by a network of situations. System (re)actions

(system services) are directly associated to the situations in

the network.

4. Method

The understandable form of the context model allows an easy

predefinition of situations and associated system (re)actions

by a supervisor. The learning process must adapt the

predefined context model according to the given supervisor

feedback on the system (re)actions. As the different layers of

a context model (entities - roles, relations - situations)

influence each other, the learning process cannot adapt them

simultaneously. Thus we will focus on the development of the

situation network and the associated system (re)actions.

Bayesian models (in particular Hidden Markov Models

[5]) as well as algorithms based on first-order logic like [6]

have been considered to represent and adapt the situation

network. However, these approaches do not have good

properties concerning the extension of the number of

situations, which is essential for developing a situation

network. Bayesian models require a large amount of example

data to extend the number of states. First-order logic

algorithms cannot create new predicates (problem of higher

order logic), which corresponds to the extension of the

number of situations. Thus the method proposed in this paper

is based on algorithmic changes of the structure of the

situation network.

4.1. Algorithm

Fig. 2 shows an overview of the proposed algorithm. The

input of the algorithm is a predefined situation network

(context model) and feedback given by a supervisor. The

supervisor corrects, deletes or preserves the (re)actions

Audience(E1)

Lecturer(E1)

Audience(E2)

¬SameAs(E1, E2)

Sit 0 =>

Sit 1 => SwitchOnLight

Sit 2 => SwitchOnProjector

Context: Lecture Room

Sit 1

Sit 0 Sit 2

Joint sOc-EUSAI conference Grenoble, october 2005

p. XYZ

executed by the system while observing a user in the

environment. Each correction, deletion, or preservation

generates a training example for the learning algorithm

containing current situation, roles and relations configuration,

and the (correct) (re)action. The differences between the

(re)actions given in the training examples and the (re)actions

provided in the predefined situation network will drive the

different steps of the algorithm.

In the first step, the algorithm tries to directly modify its

(re)actions using the existing situation network. If (re)action

A is associated to situation S, and all training examples

indicate that (re)action B must be executed instead of A, then

B is associated to S and the association between A and S is

deleted.

Figure 2: Overview of the different steps of the algorithm.

In the second step, the algorithm tries to modify the

situation network. The situation split is executed when the

supervisor perceives several situations (expressed by different

(re)actions in the training examples) while the predefined

situation network only perceives one situation (expressed by

one (re)action). Thus the situation perceived by the

predefined situation network may be too general and the

algorithm tries to split it in sub-situations. The role, relations

configuration of these sub-situations needs to be determined

according to the given training examples (Section 4.2). After

the situation split, sub-situations whose associated (re)action

is the “erase” (re)action are deleted.

4.2. Splitting Situations

When splitting situations, a number of training examples

indicate different (re)actions for one situation of the

predefined situation network. Several sub-situations need to

be created for these (re)actions. We must determine the

characteristic role, relation configurations of these sub-

situations (Fig. 3).

As a context is defined by a finite number of available

roles and relations, the situations within this context can be

represented as a fixed-sized vector containing one 0/1 value

for each available role and several 0/1 values for each

available relation. The value 1 means that the corresponding

role or relation is valid; the value 0 means that the role or

relation is not valid. As a relation is applied on entities

playing roles, it is represented by one 1/0 value for each

different role combination it can be applied to. A

characteristic role, relation configuration for one situation

may contain blanks (“-”) for those roles or relations that are

not characteristic for this situation. A training example

contains a vector with specific values reflecting the current

role, relation configuration when recording the training

example and the corresponding (re)action (given by the

supervisor). As the context is defined by the available roles

and relations, the description of the situations within this

context

The determination of the characteristic role, relation

configurations of the sub-situations can be seen as

classification problem. The (re)action labels of the training

examples can be interpreted as class labels. For each class, we

need then to determine the concepts or hypotheses based on

the given role, relation vectors of the class. These concepts or

hypotheses are then used to construct the characteristic role,

relation configurations of the corresponding sub-situation.

Figure 3: Splitting Situations with Find-S and

Candidate Elimination algorithm.

The first considered learning method is the conceptual

learning algorithm Find-S ([7] chapter 2.4) which constructs

the most specific hypothesis for each (re)action based on the

role, relation configurations in the given training examples

(Fig. 3). The resulting hypotheses for the created sub-

situations often contain, however, specific values for the

existence or non-existence of roles or relations that are not

necessary or characteristic. As a consequence, small

variations in the role, relation configuration may not be

covered by the created sub-situations because their

hypotheses are too specific.

To produce more general hypotheses for the sub-

situations, we consider the conceptual learning algorithm

Candidate Elimination ([7] chapter 2.5). This algorithm

constructs the most specific and the most general hypotheses

for each (re)action based on the role, relation configurations

in the given training examples. By combining the most

general hypotheses for each (re)action, we construct the role,

relation configuration for the corresponding sub-situations

(Fig. 3).

Both algorithms Find-S and Candidate Elimination have,

however, the restriction that they can only find one

conjunctive concept for each (re)action, i.e. if the training

(1, - , - , - , -)

(1, 0, 1, 0, -) Find-S

(1, 0, -, -, -) C. El.

(-, -, -, -, -)
Sit 1

Sit 1a

Sit 1b

Training examples in Sit 1:

Roles,Relations (Re)action

(1, 1, 1, 0, 1) A1

(0, 0, 1, 0, 0) A1

(0, 0, 0, 1, 0) A1

(1, 0, 1, 0, 0) A2

(1, 0, 1, 0, 1) A2

Split

Find-S
Rol., Rel. conf. “Class”

(-, -, -, -, -) A1 (Sit 1a)

(1, 0, 1, 0, -) A2 (Sit 1b)

C. El.
Rol., Rel. conf. “Class”

(-, -, -, -, -) A1 (Sit 1a)

(1, 0, -, -, -) A2 (Sit 1b)

Adapting Situations

Situation

Network

Adapting (re)actions

Splitting Situations

Deleting obsolete Situations

Learning Roles

Supervisor

Feedback

Joint sOc-EUSAI conference Grenoble, october 2005

p. XYZ

examples indicate that a (re)action is to be executed in two

different complementary role, relation configurations, Find-S

and Candidate Elimination will fail to construct several

hypotheses (and thus sub-situations) for this one (re)action.

This is due to the fact that neither algorithm can construct

disjunctive hypotheses.

We consider Decision Tree learning methods, in

particular the algorithm ID3 [8], in order to address the

limitation of conceptual learning methods. The idea is to

construct a decision tree that classifies the different

(re)actions found in the training examples of one situation

(Fig. 4).

The attributes of this decision tree are the roles and

relation values (0/1 values of the vector). Each leaf of the tree

is labeled with a (re)action (class). The path from the root of

the tree to the leaf gives the characteristic role, relation

configuration for the sub-situation to be created for this

(re)action. We can have several leaves with the same

(re)action, which corresponds to the creation of several sub-

situations for this (re)action (disjunctive hypotheses).

Figure 4: Splitting Situations with Decision Tree

algorithm (ID3).

4.3. Learning Roles

If the information supplied by training examples is not

sufficient to discriminate characteristic configurations for the

sub-situations during the situation split, the creation and

learning of new roles need to be considered. This is the case

when the supervisor gives different feedback while the system

perceives same situation, role and relations configurations.

Table 1: An example for learning a role. The role

acceptance test is based on the calculus of the

probability of the role value, given the entity position.

A Bayesian Classifier could be used.

Roles,

Relations

Feedback Observed

Entity

Properties

Associated

Role

Configuration

(1,0,0,1) A1 (Entity1, 101, 18)

(Entity1, 105, 20)

(Entity1, 108, 22)

NewRole1 = 0

(1,0,0,1) A2 (Entity1, 25, 0)

(Entity1, 21, 2)

(Entity1, 18, 5)

NewRole1 = 1

When creating a new role, we need to learn the

corresponding acceptance test on the properties of the

available entities. Learning a role acceptance test can be seen

as classification problem. The different supervisor feedback

items (different (re)actions) need to be distinguished based on

data given on the properties of the entities. Table 1 gives an

example referring to the system described in section 5. The

entities and their properties are created by a tracking system

running on video images of one wide-angle camera. The

properties of an entity are its name and its current position in

the image. Learning a role acceptance test corresponds here to

learning a new characteristic entity position in the image.

Given a high amount of sensor-based position data, a

Bayesian learning approach for learning the role acceptance

test seems to be appropriate for this example.

A problem is to decide which entity or entities to chose

for learning the role acceptance test. In the example we only

refer to one available entity. If there are several entities

available, the entity that allows distinguishing the supervisor

feedback items in the best way needs to be chosen. When

using a Bayesian approach, the maximum likelihood can be

used for determining this entity.

While the development of the situation network, i.e.

adapting (re)actions and situations, can be seen as generic

approach that is independent of specific perceptual

components, learning new roles relies on the properties

generated by these components. Thus the choice of the

algorithms for learning the acceptance test as well as for

determining the relevant entities depends on the available

perceptions representing the entity properties. Algorithms for

learning role acceptance test have been considered (Table 1)

but not been implemented yet.

(1, - , - , - , -)

(1, 0, -, -, -)

(1, 1, -, -, -)

(0, -, -, -, -)

1 0

0 1

a0

a1

Training examples in Sit 1:

Roles, Relations (Re)action

(1, 1, 1, 0, 1) A1

(0, 0, 1, 0, 0) A1

(0, 0, 0, 1, 0) A1

(1, 0, 1, 0, 0) A2

(1, 0, 1, 0, 1) A2

A1

A1 A2

Attributes: (a0,a1,a2,a3,a4)

Decision

Tree

Rol., Rel. conf. “Class”

(0, -, -, -, -) A1 (Sit 1a)

(1, 1, -, -, -) A1 (Sit 1b)

(1, 0, -, -, -) A2 (Sit 1c)

Sit 1

Sit 1a

Sit 1b Split

Sit 1c

Joint sOc-EUSAI conference Grenoble, october 2005

p. XYZ

5. Implementation

A context model for office activity within the SmartOffice

environment [9] of the PRIMA group has been designed and

implemented. In this environment, entities are created by a

robust tracking system [10].

Figure 5: Video image of the wide-angle camera of

SmartOffice. Four presence detection zones of the

tracking system are indicated. A white box next to the

door is used for the creation of new targets (entities).

One person is currently tracked.

The position of the created entities determines several

roles like comes_in or works_on_PC (Fig. 5). Additional

roles are determined by the login of an entity (person) to a

computer in the environment or specific appointments marked

in the agenda of the logged entity (person). The

not_same_entity_as relation is used to distinguish entities in

the environment. The (re)actions of the system are based on

the control of the Linux music player and the projection of

different messages or presentations on different surfaces in

the environment. The learning algorithms run on data base

tables containing a representation of the current situation

network and the training examples. A control process

programmed in the forward chaining rule programming

environment Jess [11] is used to execute the situation

network. This situation network represented by rules is

automatically generated from the data base tables of the

learning algorithms. The supervisor feedback cannot be given

while the user is acting in the environment (i.e. while the

control process is running). Thus the control process and the

learning algorithms need, at present, to run sequentially and

not in parallel.

6. Evaluation and Results

To evaluate our method, two experiments have been executed

on the predefined context model of the SmartOffice

environment (figure 6). The experiments have the same goal

concerning the evolution of the system services. The

supervisor gives feedback based on these goals during the

experiments. As we focus on the correct execution of the

system services, we do a cross-validation by adapting the

predefined situation network using the supervisor feedback of

the first experiment and by evaluating the second experiment

on the adapted situation network (and inverse). The

evaluation is done on the number of correctly classified

training examples, i.e. correctly executed (re)actions, as well

as on the review of the adaptations of the predefined situation

network.

Figure 6: Context model of the SmartOffice

environment. Important Situations are S0 (empty

room), S1 (newcomer enters SmartOffice), S2 (Person

connects to and works on PC), S5 (Connected Person

sits on couch) and S8 (Presentation in SmartOffice).

Figure 7: Structural adaptations performed on the

predefined context model of the SmartOffice

environment by the method (Find-S, Candidate

Elimination and Decision Tree algorithm). Situations

S1 and S5 have been split into sub-situations.

The goal of both experiments was to integrate the correct

turn-on and turn-off of the Linux music player depending on

the activities (=roles, relations) of the user. The music player

should be switched on when a newcomer sits on the couch to

have a rest, and switched off when the newcomer starts

speaking or leaves the couch (concerned situation: S1). The

music player should similarly be switched on and off for a

connected person (concerned situation: S5). Figure 7 shows

the adaptations of the concerned situations after the

integration of the supervisor feedback. S1 has been split into

additional sub-situations integrating sitting down on couch

(S11), speaking on couch (S12) and leaving couch (S10). The

additional sub-situations of S5 integrate sitting down on

couch (S51) and speaking on couch (S52).

Table 2: Confusion matrix for (re)action execution

(Find-S).

Find-S A0 A8 A9

A0 0.87 0.04 0.09

A8 0.50 0.50 0.00

A9 0.50 0.00 0.50

Joint sOc-EUSAI conference Grenoble, october 2005

p. XYZ

Table 2, 3 and 4 show the results of the (re)action

execution in the form of confusion matrices. (A8 switches on

the music player, A9 switches off the music player, and A0 is

the “do nothing” (re)action).

Table 3: Confusion matrix for (re)action execution

(Candidate Elimination).

C. El. A0 A8 A9

A0 0.91 0.04 0.04

A8 0.66 0.33 0.00

A9 0.75 0.00 0.25

In all experiments, the structural development of the

situation network corresponds to the expected changes.

Concerning the correct classification of the training examples,

i.e. the correct execution of the (re)actions, the Decision Tree

algorithm (ID3) gives the best results.

Table 4: Confusion matrix for (re)action execution

(Decision Tree, ID3).

D Tr. A0 A8 A9

A0 0.83 0.09 0.09

A8 0.00 1.00 0.00

A9 0.00 0.00 1.00

The improved results of Decision Tree approach are due

to the fact that this algorithm supports disjunctive hypotheses.

However, the Decision Tree algorithm tends to construct “too

general” hypotheses for the sub-situations, which can lead to

several inappropriate classifications. This is due to the fact

that the Decision Tree algorithm prefers small trees to large

trees, which means that general hypotheses are preferred to

specific hypotheses for the sub-situations.

7. Conclusions

We have presented a learning method for evolving system

services to changing user needs in an intelligent environment.

The intelligent environment has been modeled as a situation

network. This network is adapted according to feedback given

by a supervisor using an algorithmic learning method. The

results of the method are encouraging. The system services

desired by the human supervisor are correctly integrated into

the situation network structure.

Given supervisor feedback and generated training

examples are often not sufficient to decide which adaptation

must be done to the situation network. The proposed role

learning concept can help extending the training examples by

additional roles and hence discriminating the necessary

adaptations of the situation network. However, especially

graph optimization opens a wide range of possible

adaptations. Two different adaptations may cover the same

(optimal) number of training examples. The two

corresponding situation networks will, however, not have the

same “meaning” for the supervisor. A possible solution is the

extension of the learning to an interactive process. The

learning system will verify ambiguous choices by asking the

supervisor and the supervisor can intervene and correct when

decisions of the learning system are wrong.

The method presented in this paper relies on the correct

detection of roles and relations, which are seen as perception

modules encapsulating perception error handling. Further, the

supervisor feedback needs to be consistent, which is not

always the case in reality. Thus the focus of our future

research will concern the extension of the context model and

of the learning algorithms to fuzzy or probabilistic values by

integrating the confidence values of the perceptual processes.

References

[1] A.F. BOBICK, S.S. INTILLE, J.W. DAVIS, F.BAIRD,

C.S. PINHANEZ, L.W. CAMPELL, Y.A. IVANOV, A.

SCHUTTE, AND A. WILSON (1999). The KidsRoom:

A Perceptually-Based Interactive and Immersive Story

Environment. Presence (USA). 8(4), p. 369-393.

[2] M. MUEHLENBROCK, O. BRDICZKA, D.

SNOWDON, AND J.-L. MEUNIER (2004). Learning to

Detect User Activity and Availability from a Variety of

Sensor Data. IEEE International Conference on Pervasive

Computing and Communications (PerCom ’04). p. 13-23.

[3] E. HORVITZ, J. BREESE, D. HECKERMAN, D.

HOVEL, AND K. ROMMELSE (1998). The Lumiere

Project: Bayesian User Modeling for Inferring Goals and

Needs of Software Users. Uncertainty in Artificial

Intelligence. Proceedings of the Fourteenth Conference.

p. 256-265.

[4] J.L. CROWLEY, J. COUTAZ, G. REY, AND P.

REIGNIER (2002). Perceptual Components for Context

Aware Computing. UbiComp 2002: Ubiquitous

Computing. 4th International Conference. Proceedings

(Lecture Notes in Computer Science). 2498, p. 117-134.

[5] L. R. RABINER (1990). A Tutorial on Hidden Markov

Models and selected Applications in Speech Recognition.

Readings in speech recognition. p. 267-296.

[6] J. R. QUINLAN (1990). Learning Logical Definitions

from Relations. Machine Learning. 5(3), p. 239-266.

[7] T.M. MITCHELL (1997). Machine Learning. McGraw

Hill, New York, USA, international edition.

[8] J.R. QUINLAN (1986). Induction of Decision Trees.

Machine Learning. 1(1), p. 81-106.

[9] CH. LE GAL, J. MARTIN, A. LUX, AND J.L.

CROWLEY (2001). SmartOffice: Design of an

Intelligent Environment. IEEE Intelligent Systems. 16(4),

p. 60-66.

[10] A. CAPOROSSI, D. HALL, P. REIGNIER, AND J.L.

CROWLEY (2004). Robust Visual Tracking from

Dynamic Control of Processing. Sixth IEEE International

Workshop on Performance Evaluation of Tracking and

Surveillance. Prague, Czech Republic.

[11] JESS (1995). The rule engine for Java.

http://herzberg.ca.sandia.gov/jess/.

