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Abstract

The semantic interpretation of video sequences by com-
puter is often formulated as probabilistically relating lower-
level features to higher-level states, constrained by a transi-
tion graph. Using Hidden Markov Models inference is effi-
cient but time-in-state data cannot be included, whereas us-
ing Hidden Semi-Markov Models we can model duration but
have inefficient inference. We present a new efficient O(T )
algorithm for inference in certain HSMMs and show exper-
imental results on video sequence interpretation in televi-
sion footage to demonstrate that explicitly modelling time-
in-state improves interpretation performance.

keywords: computer vision, Hidden Markov models, video
behaviour analysis, activity recognition

1. Introduction
Many computer vision tasks, particularly image under-
standing tasks, boil down to questions about the temporal
structures – composed from low-level ‘object features’ –
that occur over a video sequence rather than the individual
features themselves. For example, detecting that an indi-
vidual is ‘window-shopping’ might be performed by look-
ing for a characteristic pattern of the individual moving at
walking speed and then stopping in front of shop windows;
there is no simple, directly observable element in any indi-
vidual frame that signifies the activity window-shopping is
occurring. Producing good interpretations requires combin-
ing both low-level image features and temporal structure.

The general temporal structure fitting problem assigns a
state (from a predefined set) to each frame based upon fea-
tures extracted from both individual frames and runs of ad-
jacent frames. These states often correspond to high-level
notions of activity, e.g., walking, window-shopping, fight-
ing, etc. In contrast, features extracted directly from the
images are generally relatively low-level and often statisti-
cally based, e.g., inter-frame energy or bounding box mo-
tion. Even the deterministic features can generally be re-

lated to higher-level states only on a probabilistic level, so
we want a modelling technique that maximises accuracy of
inference by letting us combine the direct probabilistic re-
lationships between features and states with as much other
available knowledge (either a priori relationships or learned
from training data).

We want to determine whether one out of a set of mod-
elled behaviours occurs in the sequence, and if so output a
detailed assignment of labels to individual frames. On-line
reporting of important events and dynamic self-adjustment
by the system, eg, camera servoing, make it desirable that
the analysis algorithm performs inference incrementally as
new frames are observed rather than batch processing com-
plete sequences.

Hidden Markov Models (HMM) methods are tradition-
ally used for this sort of problem, but they do not represent
the time-in-state particularly well for video sequence analy-
sis. Hidden Semi-Markov Models (HSMMs) do allow arbi-
trary distributions but don’t generally have the O(T ) algo-
rithms needed for practical continuous video analysis. This
paper describes a novel algorithm for efficient inference
when the temporal distributions satisfy a ‘convex mono-
tonicity’ property.

Previous work. Algorithms for recognition of behaviour
in video tend to be based upon distilling the contents of each
frame into symbolic labels, then fitting some form of gen-
erative probabilistic model relating high-level behaviours
to the symbolic labels. Judgements about which kinds of
structure are important for the applications considered lead
to different generative models. At the simplest level, [20]
describes a system for understanding snooker using a sim-
ple HMM after converting the sequence into events such as
ball collisions and pottings.

A natural assumption is that there is a ‘hierarchy of pro-
cesses’ occurring at different temporal granularities, so that
multiple simple models can be trained to recognise each
level of the hierarchy, rather than a complex model for the
entire process. [18] develops the Layered HMM using this



assumption and use it to recognise office behaviour.

Another situation is modelling behaviours composed of
interacting subprocesses, eg, [4] develops a Coupled HMM
and recognises tai-chi actions from limb-tracking data. In-
teracting processes are particularly important when dealing
with behaviour involving multiple people.

Although HMM-based models are most popular for be-
haviour understanding, there are at least two other ap-
proaches. Firstly, structure can be expressed instead using
stochastic context free grammars. These are arguably more
complicated models but are better for behaviours with ex-
tensive dependencies between the next state and states far
in the past, eg, [14] models blackjack whilst [16] deals with
car park behaviour. ([10] uses a Variable Length HMM to
deal with varying lengths of dependency on the past, re-
taining the efficiency of the HMM for short-term depen-
dencies.) Secondly, there are purely logic-based systems
for behaviour understanding, eg, [3, 6, 21]. Logical reason-
ing is used extensively in other areas of AI, but it is open
whether it is sufficiently robust for video sequence analysis
given the ambiguity in features extracted from images.

For video analysis the time in a state is often much longer
than the sampling frequency, whereas a HMM favours
shorter times-in-state (as explained in section 2). The
HSMM model we use to counteract this is also used by
[13] in their behaviour recogniser and [22] in their activ-
ity recognition and abnormality detection technique. The
HSMM model is examined in extensive detail in [12].
This survey of applications is especially helpful on learn-
ing model parameters. However, the algorithms used pre-
viously for HSMMs are O(TD), where D is the longest
time-in-state allowed; for parametric distributions this is un-
limited, leading to an O(T 2) algorithms, effectively limit-
ing the length of video sequence which can be analysed.
[15] is a survey of the various HSMM decoding algorithms.
This states the fastest general decoding algorithm is given in
[23], which tackles the more general problem of inference
in the presence of partially missing observation data.

The algorithms developed here are an application of ex-
isting dynamic programming algorithms developed for ef-
ficient minimal-cost matching of DNA sequences [11, 7].
These solve a class of optimisation problems by exploiting
the observation that, whilst in its general form the dynamic
programming solution has high computational complexity,
the cost functions used in practice are often ‘convex’ or
‘concave’, which can be used to give algorithms of lower
complexity. The applicability of this dynamic programming
approach to HSMMs is non-obvious because they seek to
minimise additive costs whereas the basic formulation of
probabilistic models is in terms of maximising products.
However, the connection emerges when the HSMM model
is converted to ‘negated log probabilities’.
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Figure 1: A typical transition graph (here for breakfast TV)

2. Modelling sequence structure using
Markov Transition Graphs

In this section we develop the Hidden Semi-Markov Model
we will use later, starting with a relatively abstract model
and showing how different ways of ‘concretising’ it lead to
Hidden Markov Models and Hidden semi-Markov Models.

We start with a sequence of observed feature vectors
f1, . . . , fT (eg, whole frames, block-correlation scores, etc)
which are extracted from video of a physical scene where a
particular behaviour is occurring. We have a set of states
S={s1, . . . , sS} (using superscripts to enumerate labels)
corresponding to the various possible activity states occur-
ring in individual frames. For the problem we deal with,
at each timestep t the physical scene is in a particular state
st, but we can’t compute st directly from ft, ie, the ss are
hidden variables. This is due to observations containing
a limited amount of information from the physical scene
and, most intractably, imprecise models for scene under-
standing. However we assume we have observation models
which compute the probability P (f|s) that feature vector f
is observed when the system is in state s. The obvious way
to get the most likely sequence of states is to pick the state
with highest a posteriori probability for each frame inde-
pendently. It’s clear, however, that if we have more knowl-
edge about the system we can use this to perform more ac-
curate inference.

The most basic structure we can impose on the system is
a transition graph such as Fig 1 describing allowed transi-
tions between states, in this case derived from TV footage.
At its most general, this graph specifies which new states are
allowed when a state change occurs, thus allowing any in-
terpretation where the sequence of states violates the graph
to be discarded. A temporal process is called Markov when
the future state depends only on the present state and not
on the exact details of the past, for some chosen defini-
tion of ‘present’; the graph has the Markov property that
the new state is constrained only by the present state. This
is a trade-off: Markov assumptions enable efficient evalua-
tion and, by limiting the number of model parameters, keep
the amount of training data needed practical whilst captur-



ing the real world dependencies which are generally most
significant. However, some natural constraints effectively
cannot be expressed by a transition graph, a typical exam-
ple being ‘moving to state Y can only occur if state X has
occurred at some point in the past’. Nevertheless, for suit-
able problems the transition graph can be very effective.

Models based on transition graphs. If, for each state
si, we know the probability P (sj |si) of each transition al-
lowed by the graph, we could incorporate this into the infer-
ence process and thus compute a more accurate probability
of a given interpretation. To complete this we have to han-
dle remaining in the same state between adjacent timesteps.
An obvious solution is to require a state transition at each
timestep and add ‘transition to same state’ edges to the be-
haviour graph with appropriate probabilities; in terms of
the Markov assumption this makes present mean ‘current
frame’. The probability of observing features f1:T with in-
terpretation s1:T is then

P (f1:T , s1:T ) =P (s1)

[

T
∏

t=1

P (ft|st)

] [

T
∏

t=2

P (st|st−1)

]

(1)

=P (s1)P (f1|s1)

[

T
∏

t=2

P (st|st−1)P (ft|st)

]

(2)

=P (f1:T−1|s1:T−1)P (sT |sT−1)P (fT |sT)(3)

where st is the particular state assigned at time t, a:b de-
notes a, . . . , b−1 and likewise xa:b=xa, . . . , xb−1. (The
prior probability of the initial state P (s1) complicates for-
mulae and could be avoided with an artificial start state
whose transition probabilities encode the prior on the true
initial state.) This is the standard Hidden Markov Model
(HMM) [19]. Eq 1 shows the split into feature- and
transition-based terms, whilst Eq 2 & Eq 3 shuffle terms
to highlight the Markov property that the state for the new
frame depends only on the new observation, the state for
the present timestep and the overall probability of the state
sequence so far.

One answer to the question ‘what should one use as
the values for the hidden states s1:T when observation se-
quence f1:T is seen?’ is the sequence s1:T which max-
imises the probability P (f1:T , s1:T ) in Eq 1. This has the
advantage over other answers that s1:T obeys the transi-
tion constraints embodied in the transition graph. The
recursive structure of Eq 3 is useful because it can be
seen that the maximum value of P (f1:T , s1:T ) in Eq 1
for a particular choice of sT−1 occurs for the choice of
P (f1:T−1|s1:T−1)P (sT |sT−1) with maximal value. This
means that standard dynamic programming techniques [1,
19] can be used to perform this maiximisation incrementally
taking O(S2T ) time overall. This maximisation process is
known as inference or decoding.

However there is one assumption in this model which
is not immediately obvious. By direct calculation we can
see that the prior probability of staying in state si for ex-
actly τ steps is P (si|si)τ (1−P (si|si)). Thus in a HMM
the self-transition probability is really a parameter which
tunes the prior geometric distribution [5] over the time in
the current state. (A range of geometric distributions are
shown in Fig 2d.) There are many situations where this is a
reasonable model, particularly if the observation frequency
is close to the typical time in the state, but it is often de-
sirable to have a model which allows specifying different
temporal priors, particularly if the observation frequency is
much higher than the typical time in state.

This can be achieved by using an additional probability
distribution

P (t|s):=P (spent exactly t timesteps in state | state iss)
(4)

instead of adding the self-transitions. These are assumed
to be full distributions with non-zero (but increasingly
small) probabilities for arbitrarily large durations. The
probability of a sequence of observations is then com-
posed from the probabilities of the transitions, state dura-
tions and features. This model is called a Hidden Semi-
Markov Model (HSMM) (also known as an explicit du-
ration HMM) [8, 17] where the equivalent of Eq 2 is
the joint probability of the observations and the divi-
sion of the sequence into intervals in a given state, ie,
s0 during τ0:τ1, . . . , sm during τm:τm+1,

P (f0:T , s0 during τ0:τ1, . . . , sm during τm:τm+1)

=

[

m
∏

i=1

P (si|si−1)

][

m
∏

i=0

P (fτi:τi+1
|si)

][

m
∏

i=0

P (τi+1−τi|si)

]

(5)

= P (fτ0:τ1
|s0)P (τ1−τ0|s0) (6)

×

[

m
∏

i=1

P (si+1|si)P (fτi:τi+1
|si)P (τi+1−τi|si)

]

= P (fτ0:τm
|s0 during τ0:τ1, . . . , sm−1 during τm−1:τm)

×P (sm|sm−1)P (fτm:τm+1
|sm)P (τm+1−τm|sm) (7)

where “sm during τm:τm+1” means the system was in state
sm from time τm to τm+1 − 1 and we require τ0=1 and
τm+1=T . Again, Eq 5 expresses the probability in terms
of the feature, duration and transition components taken
separately. (There is an assumption here that the time-in-
state and observed features are independent given the state,
which is often reasonable.) Similarly in Eq 6 & Eq 7 they
have been shuffled to show the Markov structure, although
now present means ‘current segment’.

Models for state duration. The top row of Fig 2 shows
a set of histograms of state duration for various classes ob-
tained from the manually labelled ground truth (discussed
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Figure 2: (left) histograms of time-in-state; geometric;
(right) geometric, gaussian & modified gamma distributions

below). These have a rough characteristic shape where the
probability of a given duration rises quickly to a most likely
duration, then tails off significantly more slowly, a poor fit
with the set of shapes obtained with a geometric distribu-
tion.

The obvious approach is to model the duration distribu-
tion using an empirical histogram. However, because each
sample comes from a segment comprising perhaps tens of
frames obtaining sufficient training data to adequately pop-
ulate the histogram is difficult. Although we could try his-
togram smoothing, we choose instead to model the distri-
bution with a parametric distribution. Two advantages are
that we automatically generate a smooth distribution from
the data and can accommodate prior knowledge about the
likely time-in-state via priors on the parameters. We argue
that using a roughly appropriately shaped parametric dis-
tribution is acceptable when training data is limited, even
though we don’t know if the ‘true’ generating distribution
is in the chosen family. (An argument could be made for
possible multi-modality in these distributions, which might
suggest a mixture model, but with at most 100–200 exam-
ples per class – from a 12,500 frame ground truth – a mean-
ingful conclusion cannot be drawn about this.)

To choose the parametric family, observe that the time-
in-state is restricted to positive values and the empirical dis-
tributions in Fig 2 are noticeably asymmetric around the

mode. Consequently a gaussian is also a poor model and
instead we model the time-in-state with a ‘modified gamma
distribution’. This generalisation of the gamma distribution
[5] parameterised by γ and β has pdf

p(t) = (t/β)γ exp(−(t/β)z)/Z (8)

where z is some constant >1 and normalizing constant Z
is equal to βΓ(γ+1

z
)/z. (As we use different distribution

parameters for each state s the normalising constants do
not cancel.) The plots in Fig 2 show examples of geomet-
ric, gaussian and modified gamma distributions; it is clear
that the modified gamma is the most similar to the empirical
plots.

Fitting parameters given training data is complicated
since even with 100–200 examples there are still areas of
low sample density and wide variation between adjacent
time points. Although we attempted to fit distributions au-
tomatically, the restricted number of samples resulted in
curves distorted by the requirements of fitting against the in-
adequately sampled right-hand tails of the histograms; con-
sequently we fitted appropriate looking distributions man-
ually for our experiments. More extensive ground truth
datasets would enable automatic fitting of the distributions.

3. Computing the most likely HSMM
decoding of a sequence

The activity recognition process is formulated as finding the
most likely sequence of states according to the HSMM pa-
rameters. An O(S2T 2) HSMM most-likely sequence in-
ference algorithm which works with arbitrary duration dis-
tributions is given in [17]. This time complexity essen-
tially arises because at each timestep a maximisation has
to be performed not only over all states for the previous
timestep but also all possible lengths of time in that state.
This quadratic behaviour is infeasible when working with
long video sequences (large T ), so we develop an O(S2T )
algorithm (adapting [11]) by first showing the key step in
inference is deciding between different segmentations end-
ing at the same time, then show how this can be tackled
effectively using structure within the HSMM model.

HSMM inference as optimal segmentation. For the stan-
dard HMM the natural view of inference is that of assign-
ing states at each time, whereas for the HSMM inference
is most naturally viewed as segmenting the sequence into
intervals with a common state. We want to find the best di-
vision into segments using an algorithm which is recursive
in that the optimal segmentation of a sequence can be com-
puted using the optimal divisions of its prefixes. In a similar
way to the standard HMM algorithm at each time t we find,
for each state s, the best segmentation which ends in state
s at t. The Markov property of the HSMM means that the
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Figure 3: two potential segmentations, both of which tran-
sition to a final the same final state s

only influence from the previous segments comes from the
total probability of that previous state and the time at which
the transition to the present state occurred. This is illus-
trated by Fig 3, where the top line indicates the timeline in
state s, whilst the other two lines show two segmentations
which switch to s for the final block. The dashed segments
on the left indicate the best probability previous segmenta-
tions (where we will see below the exact details of which
don’t matter). So the basic task is to decide between two
such segmentations, both of which finish in a segment in
state s at time t−1.

Structure in HSMM probabilities. We will show
that, with a standard ‘naive Bayes’ assumption on fea-
tures P (fa:b|s) =

∏b−1

i=a P (fi|s), which of two segmenta-
tions ending in s is best doesn’t depend on the feature data
in their common suffix.

To do this we compare the probabilities of two hypoth-
esised segmentations which have the common feature of
both finishing at time t−1 in a segment in state s. (A
schematic illustration shown in Fig 3.) In one case this
final segment begins at time a with and has a probability
Ph1

=P (f1:a|to a) for a hypothesised segmentation to a for
the initial sequence f1:a. (Fig 3 shows the previous history
before the transition being in a state s′ but the key point is
that the only factor affecting the calculations is the probabil-
ity P (f1:a|to a)). We have a second sequence which transi-
tions to s at time b (where a<b) and has hypothesised seg-
mentation to b for f1:b with probabilityPh2

=P (f1:b|to b).
Then the full segmentations including the final segment
have probabilities

P ′

h1
:= P (f1:t|to a, s during a:t) (9)

= P (f1:a|to a)P (fa|s)· · ·P (fb|s)· · ·P (ft|s)P (t−a|s)

= Ph1
P (fa|s)· · ·P (fb|s)· · ·P (ft|s)P (t−a|s)

P ′

h2
:= P (f1:t|to b, s during b:t) (10)

= Ph2
P (fb|s)· · ·P (ft|s)P (t−b|s)

If our sequence ended at time t we would choose the larger
of P ′

h1
and P ′

h2
as the most likely sequence. Notice that

both expressions have common terms Eq 9 and 10; defining

K := P (s|fb)· · ·P (ft|s) (11)

a b

τ

Figure 4: how curves of ‘constant×duration’ prior split the
future into intervals

C1 := Ph1
P (fa|s)· · ·P (fb−1|s) (12)

C2 := Ph2
(13)

the rhs of equations 9 & 10 become C1KP (t−a|s) &
P ′

h2
:=C2KP (t−b|s) respectively, so that K is the proba-

bility of observations falling within the common suffix of
the final segments in state s in Fig 3). The key is to now
consider what happens if we extend the final segment of
both possibilities (shown by the dashed lines on the right in
Fig 3), remaining in the same state s, so they now end at a
time t+t′:

P (f1:t+t′ |to a, s during a:t+t′) (14)

= C1KP (ft+1|s)· · ·P (ft+t′ |s)P (t−a+t′|s)

= C1KK ′P (t−a+t′|s) (15)

where we define K′:=P (ft+1|s)· · ·P (ft+t′ |s). Likewise

P (f1:t+t′ |to b, s during b:t+t′) (16)

= C2KP (ft+1|s)· · ·P (ft+t′ |s)P (t−b+t′|s)

= C2KK ′P (t−b+t′|s) (17)

We see the additional feature-dependent terms are again
common to both expressions. The inference algorithms will
proceed through the sequence finding the largest probabil-
ity for the various combinations of final segment length and
label. From these equations we can see that, in determining
which of Eq 14 & 16 is larger we can cancel the common
term KK ′ (regardless of its precise value) and thus need
only compare C1P (t−a+t′|s) with C2P (t−b+t′|s). Thus
we have a slightly simpler optimisation problem, but we can
really exploit this if we additionally require that the duration
distribution P (t|s) is concave monotonic, i.e.,

C1P (t−a|s) ≤ C2P (t−b|s)

⇒ C1P (t−a+t′|s) ≤ C2P (t−b+t′|s) (18)

for t′>0 and arbitrary constants C1 and C2. This intuitively
states that ‘given two segmentations ending in the same
state at a common time, once they have been extended with
new frames’ data until the longer segmentation has a lower
probability, then it will always have a lower probability as
both segmentations are further extended over the feature se-
quence’. If we keep track of candidate segmentations and



initialisation
1 for s∈S: #initialise each queue with one big interval
2 set q[s]:=〈r〉 with r.nlp:=0, r.t0:=1 & r.dom int st:=1

main algorithm
3 for t:=1, . . . , T : #build up the best solution recursively
4 for s∈S such that t≥q[s].hd.next.dom int st:
5 pop head(q[s])#discard intervals as time passes domination point
6 for s∈S: #figure what’d happen if sequence ends in state s
7 create r with r.nlp:=∞ #make r ‘impossibly unlikely’
8 for s′∈S\{s}: #find best transition from other state into s at time t

9 add −logp(ft|s′) to .nlp of each entry on q[s′]

10 q[s′].hd.nlp:=sum of old nlp, duration & transition values
11 if q[s′].hd.nlp<r.nlp: r:=q[s′].hd #best new ‘solution’ yet
12 loop: #discard intervals off queue until get split interval
13 τ :=dom pt(q[s].tl.nlp, q[s].tl.t0, r.nlp, r.t0)
14 if τ≥q[s].tl.dom int st:#r dominates q[s].tl from τ onwards
15 exit loop #almost finished updating dominant intervals
16 pop tail(q[s]) #solution q[s].tl never optimal, so discard
17 set r′ with r′.nlp:=r.nlp, r′.t0:=t,& r′.dom int st:=τ

18 push tail(q[s], r′) #newly created interval occurs at end
finding the final result

19 search over final states s to find the q[s].hd with lowest .nlp

Records describe dominant intervals via fields .nlp (solution’s
negated log-probability so far), .t0 (timestep the final segment
begins) & .dom int st (time current interval becomes domi-
nant). The q[s]’s are double ended queues with head hd and tail tl.

Figure 5: Overview of O(S2T ) HSMM decoding algorithm

their probabilities we can detect the point at which Eq 18
becomes valid and then deduce some segementations which
can never give optimal solutions in the future regardless of
the sequence’s stopping point or the new feature data; via
this means most segmentations can be discarded. (We still
need to compute the probabilities of those possibilities that
we do keep using all the terms, but we can rule out some
possibilities no matter what future feature values are ob-
served using only the values C1 and C2 and the time t at
which Eq 18 first becomes true.)

To relate this to the dynamic programming algorithms of
[11, 7], we take negated log-probabilities, so Eq 18 becomes
convex monotonicity:

log(C2/C1)+Ls(t−a) ≥ Ls(t−b)

⇒ log(C2/C1)+Ls(t−a+t′) ≥ Ls(t−b+t′) (19)

where Ls(T )=− log(T |s). Thus we can work in the log-
probability domain, which removes most of the underflow
problems that occur with large products of probabilities.

Convex monotonicity and dominant intervals. As our
duration distributions have a particular parametric form, not
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Figure 6: Feature output (graph a), HSMM decoded se-
quence (graph b), and O(ST ) linear scaling for the number
of insert/delete operations for synthetic datasets

only can we verify algebraically that Eq 19 holds but also
find the time at which the shorter solution (ie, most recent
transition tob in Fig 3) first becomes better, i.e.

dom pt(C1,a,C2,b)=τ st log(C2/C1)+Ls(τ−a)=Ls(τ−b)
(20)

in terms of negated log-probabilities, seen schematically in
3. We call τ the domination point because the segmentation
b ‘dominates’ segmentation a when the final segment is ex-
tended to any time after τ . For the distribution in Eq 8 the
original probability based equivalent of Eq 20 for τ is

C1

(

τ−a

β

)γ

exp

[

−

(

τ−a

β

)z]

=C2

(

τ−b

β

)γ

exp

[

−

(

τ−b

β

)z]

(21)

This doesn’t have a closed form, but as Ls is monotonic we
can use binary search to find the zero of Eq 20. (Histogram-
based time-in-state distributions could be used in the same
way providing they satisfy concave monotonicity condition
Eq 18.)

To complete the algorithm recall that ≥ is transitive, so
that if we’re at a time t and have a segmentation α domi-
nating β, then any segmentation γ dominated by β is thus
automatically dominated by α. With a little thought we can
see that for each state s we can divide the future into in-
tervals by finding the domination points. Each interval de-
scribes the set of timesteps where a given segmentation is
optimal, illustrated schematically in Fig 4b. (There will typ-
ically be only a small number of intervals where different
labellings dominate because most segmentations are domi-
nated by one solution or another for the entire future.) The
key point is that these intervals do not need to be found from
scratch at each new step but, due to convex monotonicity,
can be updated by finding the domination point for the new
segmentation against the previous timesteps’ dominant in-
tervals, starting from the final interval ending at t=∞ and



Figure 7: Typical frames and discriminative image patches
(final row, different scale) for the breakfast TV sequence

discarding intervals until one is found where the domination
point falls within its.

A detailed overview of the algorithm for finding the most
probable sequence segmentation is shown in Fig 5, using
queues of records describing intervals over which a given
segmentation is dominant for pruning. To analyse its run-
ning time we start by noting the three nested for loops give
O(S2T ) time. To see the contribution of the queue mainte-
nance loop, note: (i) each q[s] is initialised with 1 record in
step 2; (ii) for each state s at time t one record r′ is pushed
onto the queue in step 18; (iii) each record can be popped
off at most once during the entire run (at either step 5 or 16).
Thus only O(T ) operations are performed on each q[s] and
the run-time is governed by the O(S2T ) double-nested for
term. (The overview is simplified: the for loops updating
each queue q[s] should ‘see’ the non-updated heads q[s′].hd
of the other queues in step 7, which requires book-keeping;
also real code has to be structured to avoid problems from
loss of precision with machine floating point.)

3.1. Experiments
We demonstrate two points: Firstly, given HSMM parame-
ters and an observation sequence our algorithm produces the
optimal output in O(S2T ) time. Secondly, that a HSMM
is a practical approximation for recognising behaviours in
real video sequences. The model does not use all the hu-
man labeller’s knowledge, so we wouldn’t expect the best
Hidden Semi-Markov Model decoding to exactly match the
ground truth. Such errors are deficiencies of the HSMM as-
sumptions; our algorithm finds the optimal solution given
the model.

Synthetic data. Our experiment used a synthetic gener-
ating process with four states 0,. . . , 3 and modified gamma
distributions with random parameters for time-in-state. The
observations are the state number plus additive gaussian

noise. Graph a in Fig 6 shows the raw feature output and
graph b shows the most likely HSMM decoding for a typical
random dataset. For a large number of random runs we used
Monte-Carlo methods around the found HSMM to sample
similar solutions around the produced output state sequence
and checked that each variation had a higher negated log-
probability, thus verifying our algorithm found the correct
(ie, most likely) solution. Finally the table in Fig 6 shows
the good linear agreement between theoretical value ≈ST
and the number of insertions/deletions on the queues. (The
difference #ins−#dels is the number of intervals on the var-
ious queues when the sequence ends.)

Real data. For our real-world experiments we used
footage from a British breakfast television programme,
since long sequences of ≈21/4 hours are easily obtainable
and there is a strong structure to the broadcast. We took
five MPEG enocoded video sequences and extracted every
50th frame (i.e., 2 seconds). Fifteen labels were chosen and
the appropriate transition structures found (shown in Fig 1).
After hand-labelling we could then learn transition proba-
bilities and duration distributions for both a standard HMM
and a HSMM.

Low-level features were obtained by first creating a train-
ing set of frames and repeatedly selecting large sets of ran-
dom patches with locations in the images and computing
Sum of Absolute Difference values with other frames in the
set. Blocks were then assigned to the class for which they
gave lowest score and a 1-dimensional kernel density esti-
mate [2] for each class produced. On the test sequence these
patches and models were then used to produce likelihoods
P (f|s) of each image given the state label. The likelihoods
were then combined to give probabilities of the image being
in each class. Finally the state labels for the whole sequence
was computed using the HMM and HSMM algorithms.

We compared our algorithm and the HMM model’s
match with the ground truth over each of the five sequences,
with the results for two sequences shown in 8. The top row
shows the ground truth (again plotting the numeric state
label at each time), the middle row the HMM decoding
and the bottom row the HSMM labellings for two of the
datasets. Some additional artifacts can be seen in the HMM
decoding due to its inability to model durations. The table
shows the percentage of correct labellings for each of the
5 sequences for both approaches. (The values are high be-
cause many of the correlation blocks correspond to highly
distinctive information like on-screen graphics which pro-
vides a very strong data cue over significant portions of the
input sequence, thus diminishing the importance of the tem-
poral structure.) Nevertheless, the HSMM has labelled a
higher percentage of frames correctly. The practical run-
times of both algorithms were essentially the same.

The advantages of a HSMM over a HMM would greater
if we extracted every frame from the footage, since two sec-
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Figure 8: Results graphs for the five test sequences

onds would give 50 observations rather than one.

4. Conclusions & future work
We reviewed the Hidden Markov Models and Hidden Semi-
Markov Models and showed the duration-in-state distribu-
tions for the TV datasets is better well modelled by a stan-
dard HSMM model. This paper’s key contribution is an
algorithm for efficient inference in HSMMs with convex
monotone duration distributions in the case of naive Bayes
features and suitable duration distributions. In future we in-
tend to apply these algorithms to the task of understanding
surveillance footage with the context of the CAVIAR vision
project [9].
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