
Comparison of target detection algorithms using adaptive background models

D.Hall1, J. Nascimento2, P. Ribeiro2, E. Andrade3, P. Moreno2, S. Pesnel1, T. List3, R. Emonet1,
R.B. Fisher3, J. Santos Victor2 and J.L. Crowley1
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Abstract

This article compares the performance of target detec-
tors based on adaptive background differencing on pub-
lic benchmark data. Five state of the art methods are de-
scribed. The performance is evaluated using state of the art
measures with respect to ground truth. The original points
are the comparison to hand labelled ground truth and the
evaluation on a large database. The simpler methods LOTS
and SGM are more appropriate to the particular task as
MGM using a more complex background model.

1. Introduction
The video surveillance domain has a great demand for
real time image processing systems that operate reliably 24
hours a day, 7 days a week. Efficient and reliable algo-
rithms are required for this kind of system. Adaptive back-
ground differencing techniques have become a widely used
solution, since they can incorporate illumination changes as
they occur in outdoor scenes during the day. In this arti-
cle, we compare five state of the art adaptive background
differencing techniques. The detectors are evaluated on the
same public benchmark dataset which allows a fairer and
more extensive comparison. Furthermore we show an ar-
chitecture where such an detector can be combined with a
Kalman filter. The performance increase is demonstrated on
an example.

This article gives insight into performance, computa-
tion time and usability of these methods. The same tech-
niques were previously tested on the PETS 2001 dataset [9].
Ground truth for the PETS 2001 data set was generated by a
semi-automatic technique, where the tracking results were
monitored and corrected by a human. The data set used here
is much larger and we compare the results with respect to
independently hand labelled ground truth. This shows in
addition to the previous comparison the performance com-
pared to a human.

The first method is a basic background subtraction algo-
rithm (BBS). This is the simplest algorithm and it provides
a lower benchmark for the other algorithms which are more
complex but based on the same principle.

The second algorithm is denoted asW4and operates on

gray scale images. Three parameters are learned for each
pixel to model the background: minimum intensity, max-
imum intensity and maximum absolute difference in con-
secutive frames. This algorithm incorporates the noise vari-
ations into the background model.

The third method is used inPfinder[13] denoted here as
SGM(Single Gaussian Model). This method assumes that
each pixel is a realization of a random variable with a Gaus-
sian distribution. The first and second order statistics of this
distribution are independently estimated for each pixel.

The fourth method is an adaptive mixture of multiple
Gaussians(MGM) as proposed by Stauffer and Grimson
in [12]. Every pixel of the background is modeled using
a mixture of Gaussians. The weights of the mixture and the
parameters of the Gaussians are adapted with respect to the
current frames. This method has the advantage that multi-
modal backgrounds (such as moving trees) can be modeled.
Among the tested techniques, this is the one with the most
complex background model.

The fifth approach(LOTS)proposed by Boult in [2] is an
efficient method designed for military applications that pre-
sumes a two background model. In addition, the approach
uses high and low per-pixel thresholds. The method adapts
the background by incorporating the current image with a
small weight. At the end of each cycle, pixels are classi-
fied as false detection, missed detection and correct detec-
tion. The original point of this algorithm is that the per-pixel
thresholds are updated as a function of the classification.

The article is organized as follows. Sections 2 to 7 de-
scribe the technical details of the approaches. Section 8 de-
scribes the database, the evaluation metrics and the experi-
mental results. We finish with conclusion and an outlook.

2. Basic Background Subtraction
This method detects targets by computing the difference be-
tween the current frame and a background image for each
color channel RGB. A thresholding operation is performed
to classify each pixel as foreground if

|It(φ)−Bt(φ)| > nc, (1)

whereIt(φ) is a 3-dimensional vector representing the in-
tensity values of the three color channels at image position
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φ. Bt(φ) is the mean color (background) of the pixel,nc is
the noise threshold. The operation in (1) is performed for
all image pixelsφ.

Segmentation of objects from the background can be
achieved by connected component analysis (e.g., using 8
- connectivity criterion). This step is performed after mor-
phological filtering with a 3x3 mask (dilation and erosion)
that eliminates isolated pixels. The same connected com-
ponent analysis is performed in the methodsW4andSGM
(Section 3 and 4).

To take into account slow illumination changes which
is necessary to ensure longterm tracking, the background
image is subsequently updated by

Bt+1(φ) = αIt(φ) + (1− α)Bt(φ) (2)

with the learning rateα. In the experiments we useα =
0.15 and noise thresholdnc = 0.2 since there were found
to be good values in a previous experiment [10]. These pa-
rameters stay constant during the experiment.

3. W4 method
This algorithm was proposed by Haritaoglu in [5]. The
background scene is modelled by representing each pixel by
three values; minimum intensity (Min), maximum intensity
(Max), and the maximum intensity difference (D) between
consecutive frames during the training period. These val-
ues are estimated over several frames and are periodically
updated for background regions. In the experiments, 100
target free images are selected for parameter learning. No
parameters need to be set by hand.

Foreground objects are computed in four steps:i) thresh-
olding, ii) region based noise cleaning,iii) morphological
filtering andiv) object detection. Each pixel is classified as
background or foreground using following equation. Giving
the values of Min, Max and D, a pixelI(φ) is considered as
foreground pixel if

|Min(φ)− I(φ)| > D(φ) or |Max(φ)− I(φ)| > D(φ)
(3)

The resulting thresholded image usually contains a signifi-
cant amount of noise. A region based noise cleaning algo-
rithm is applied that is composed of an erosion operation
followed by a connected component analysis that allows to
remove regions with less than 50 pixels. The result is a set
of bounding boxes that contain the targets. The morpholog-
ical operations dilation and erosion are now applied to the
foreground pixels that are inside the bounding boxes. The
final bounding boxes are computed and returned as targets.

4. Single Gaussian Model
In this section we describe the Single Gaussian Model al-
gorithm (SGM)proposed by Wren in [13]. In this method,

the intensity and color of each pixel is represented by a vec-
tor [Y,U, V ]T . We assume only slow scene changes. The
mean~µ(φ) and covarianceU(φ) of each pixelφ can be re-
cursively updated as follows

~µt(φ) = (1− α)~µt−1(φ) + αIt(φ), (4)

U t(φ) = (1− α)U t−1(φ) + α~ν(φ)~ν(φ)T (5)

whereIt(φ) is the pixel of the current frame inY UV color
space,α is the learning rate and~ν(φ) = It(φ)− ~µt(φ).

After background adaptation, we compute for all image
positionsφ the log likelihoodl(φ) of the difference~ν(φ)
between current image and background. This value gives
rise to a classification of individual pixels as background or
foreground

l(φ) = −1
2
~ν(φ)T (U t)−1~ν(φ)− 1

2
ln |U t| − 3

2
ln(2π) (6)

A pixel φ is classified as foreground ifl(φ) < nc else
it is background. ThenSGM detects targets by computing
connected components from the foreground pixels. In the
experiments we useα = 0.005 andnc = −300. After a
series of tests, these parameters produced the best results.

5. Multiple Gaussian Model
In recent years time-adaptive per pixel mixtures of Gaus-
sians background models have been a popular choice for
modelling complex and time varying backgrounds [6]. In
this work we have implemented the original version of the
adaptive mixture of multiple Gaussians background model
(MGM) for motion tracking described in [12].

5.1. Algorithm
In this algorithm the pixel process is considered a time se-
ries of vectors for colour images. The history of a particular
pixel φ is given by:

{X1, ...Xt} = {I(φ, i) : 1 ≤ i ≤ t} (7)

whereI is the image sequence. The algorithm models the
recent history of each pixel as a mixture ofK Gaussian
distributions. Thus the probability of observing the current
pixel value is:

P (Xt) = ΣK
i=1ωi,t ∗ η(Xt, ~µi,t, Ui,t) (8)

whereK is the number of distributions,wi,t is the weight
estimate of theith Gaussian in the mixture at timet, ~µi,t

andUi,t are the mean value and covariance matrix of theith
Gaussian at timet, andη is the Gaussian probability density
function.

η(Xt, ~µ, U) =
1

(2π)
n
2 |U | 12 e−

1
2 (Xt−~µ)T U−1(Xt−~µ) (9)
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For computational simplicity the covariance matrix is as-
sumed to be of the formUk,t = σ2

kI avoiding a costly matrix
inversion at the expense of some accuracy. The algorithm
assumes that red, green and blue channels are independent
and that the pixel process is non-stationary. These assump-
tions result in an on-line k-means approximation algorithm
for the mixture model. In the on-line approximation, every
new pixelXt is checked against the K existing Gaussian
distribution. A match is found if the pixel value is within
L = 2.5 standard deviation of a distribution. This is effec-
tively a per pixel per distribution threshold and can be used
to model regions witrh periodically changing lighting con-
ditions. If the current pixel value matches none of the dis-
tributions the least probable distribution is updated with the
current pixel values, a high variance and low prior weight.
The prior weights of theK distributions are updated at time
t according to:

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (10)

whereα is the learning rate andMk,t is 1 for the model
which matched the pixel and 0 for the remaining models.
After this approximation the weights are renormalised. The
changing rate in the model is defined by1/α. The param-
eters~µ and σ for the unmatched distributions remain the
same. The parameters for the matching distribution are up-
dated as follows:

~µt = (1− ρ)~µt−1 + ρXt (11)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − ~µ)T (Xt − ~µ) (12)

ρ = αη(Xt|~µk, σk) (13)

For change detection a heuristic searches for the learnt
distributions which have more supporting evidence. The
Gaussians are ordered based on the ratio ofω/σ. This in-
creases as the Gaussian’s weight increases and its variance
decreases. The firstB distributions accounting for a pro-
portionT of the observed data are defined as background.

B = arg min
b

(
Σb

k=1ωk > T
)

(14)

In the current implementation the original algorithm [12]
is modified to update the background model only for pix-
els detected as background in the previous frame. This de-
creases the absorption rate of stationary objects (dropped
bags, immobile people) into the background model. Several
sequences contain such immobile targets that should be de-
tected by the algorithm. This modification increases there-
fore the detection performance. After foreground detection
the pixels are morphologically filtered (noise reduction) and
labelled. Connected components smaller thanTc pixels are
discarded.

5.2. Parameterization for the experiments
The model is initially trained with 13 training sequences.
No modification in the update rules are used for training.
The algorithm parameters are set toK = 5 Gaussians,
learning rateα = 0.002 andL = 2.5 standard deviations to
look for matching Gaussians. The detection performance is
tested using the 14 test sequences.

For testing the initial 20 frames of each sequence receive
a full adaptation, after that, only pixels classified as back-
ground have their distributions updated. For detection, the
additional algorithm parameters are set toT = 0.97, corre-
sponding to the percentage of pixels observed accounted for
by the most stable distributions (background). This results
in multi-modal distribution for the background.L = 4.5 al-
lows larger deviations from the original background model.
Tc = 25 pixels to remove small (noisy) connected compo-
nents. After several trials with different parameters, these
settings produced the best results.

6. LOTS
The target detector proposed in [2] operates on gray scale
images. It uses two background images and two per-pixel
thresholds. The two backgrounds model periodic changes
such as moving trees. The per-pixel threshold image can
treat each pixel differently, allowing the detector to be ro-
bust to localized noise in low-size image regions. The per-
pixel threshold evolves according to a pixel label provided
by a Quasi Connected Components analysis (QCC). This is
a light version of the traditional connected component anal-
ysis that is also used to provide the target’s bounding boxes.

6.1. Algorithm
The steps of the algorithm can be summarized as:

1. Background and threshold initialization. Set the
background modelsB1, B2, and the threshold values
TL (low threshold),TH (low threshold). The values in
B1 andB2 are the lower and higher “non-target” pixel
values in the scene, considering some temporal win-
dow. The per-pixel thresholdTL, is then initialized to
the difference between the two backgrounds:

TL(φ) = |B1(φ)−B2(φ)|+ U(φ) (15)

whereU represents noise with an uniform distribution
in [1, 10], andφ an image pixel. A higher thresholdTH

is computed by:

TH(φ) = TL(φ) + V (16)

whereV is the sensitivity of the algorithm.
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2. Detection and LabelingFirst we createD, which con-
tains the minimum of the differences between the new
imageI, and the backgroundsB1 andB2:

D(φ) = min
j
|I(φ)−Bj(φ)|, j = 1, 2. (17)

D is then compared with the threshold images. Two bi-
nary imagesDL andDH are created. The active pixels
of DL andDH are the pixels ofD that are higher than
the thresholdsTL andTH respectively.

QCC computes for each thresholded imageDL and
DH imagesDsL andDsH with 16 times smaller res-
olution. Each element in these reduced images,DsL

and DsH , has the number of active pixels in a 4x4
block of DL andDH respectively. Both images are
then merged into a single image that labels pixels as
detected, missedor insertions. This process labels ev-
ery pixel, and also deals with targets that are not com-
pletely connected, considering them as only one re-
gion.

A 4-neighbor connected components is then applied to
this image and, the regions with less thanA pixels are
eliminated. The remaining regions are considered as
detected. Thedetectedpixels are the ones fromDL

that correspond to detected regions. Theinsertionsare
the active pixels inDL, but do not correspond to de-
tected regions, and themissedpixels are the inactive
pixels inDL.

3. Backgrounds and threshold adaptation. The back-
grounds are updated as follows:

Bt+1
i (φ) =





(1− α′)Bt
i (φ) + α′It(φ), φ ∈ detected

(1− α)Bt
i (φ) + αIt(φ),

φ ∈ missed∪ insertions
(18)

Generallyα′ is smaller thanα and only the back-
ground corresponding to the smaller differenceD is
updated. Using the pixel labels, thresholds are updated
as follows:

T t+1
L (φ) =





T t
L(φ) + 10 φ ∈ insertions

T t
L(φ)− 1 φ ∈ missed

T t
L(φ) φ ∈ detected

(19)

This adaptation procedure decreases slowly the thresh-
old for missedpixels. This is done until their label
changes. If they becomedetectedthe threshold is
maintained constant. If they becomeinsertions, due
to noisy pixels or if the threshold is too low, it is in-
creased. This way the system has a constant rate of in-
serted pixels that can be chosen changing the increas-
ing and decreasing steps.

6.2. Parameterization for the experiments
The first step of the algorithm, performed only once, as-
sumes that during a period of time there are no targets in
the image. In this ideal scenario, the two backgrounds are
computed easily. The image sequences used in this work
do not have target-free images, so another approach was
used.B1 is initialised as the mean ofK consecutive frames.
B2 = B1 + u with u additive noise ofN (µ = 10, σ = 20).
The thresholds are initialized as follows: (i) initializeTL

randomly,TL = N (µ = 10, σ = 20), and (ii) run the se-
quence from the end to the beginning and adapt the thresh-
old. Then the resulting threshold was used to start testing
the sequence. After the initialization, the detection and la-
beling step is performed every frame. The adaptation step is
performed everyN frames, whereN is related to the back-
ground adaptation constant (see [2] for details).

In the experiments we use the parametersα = 0.000306
andα′ = α

4 as proposed in [2]. The sensitivity,V = 40,
is chosen from Receiver Operating Characteristics [10] and
the minimum area,A = 100 pixels, from the working sce-
nario. The system runs at more than 130Hz on a 1.6GHz
processor using images of 384x288 pixels.

7. Real-time tracking system
In this section we describe a modular architecture for a real
time tracking system and use it to increase the performance
of the detection. For demonstrating the performance gain
by enhancing a detector with a Kalman filter using this ar-
chitecture, we add to the experiments the evaluation of the
real time tracking system using theBBSmethod for target
detection.

The tracking system is composed of a central supervisor
that calls subsequently the video demon, the robust tracking
module and the target detection module (Figure 1). The su-
pervisor manages the data flow between the modules. The
detection module detects new targets that are added to the
target list. The tracking module provides robust tracking of
the current targets using a Kalman filter. The architecture is
modular and allows experiments with different implemen-
tations of the detection module.

An interesting point is that the Kalman filter can serve
to reduce the image surface that needs to be processed by
computing a region of interest (ROI) of the targets. This
approach allows to reduce the processing time. For further
speedup, we restrict the appearance of new targets to man-
ually defined detection regions [11].

The robust tracking system returns events in form of vec-
tors composed of centroid and width and height of the target
regions~y(ti) = (xc, yc, w, h)T . These values are computed
from the foreground pixel in the target ROI. This opera-
tion is a short cut that allows to obtain the target position
and extent directly without need for a costly computation of
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Figure 1:Architecture of the tracking and detection system con-
trolled by a supervisor.

connected components. The tracking system depends on a
number of parameters such as detection thresholddc (mini-
mum size of targets), noise thresholdnc (pixel energy below
this threshold is considered as noise) and parameters that
control split and merge of targets (these parameters deter-
mine how close targets need to be for merging or splitting).

7.1. Robust Tracking
Robust tracking is achieved by a first order Kalman filter
that propagates the target positions and extents in time and
updates them by measurements from the detection mod-
ule. A target is deleted only when the detected pixels in
the region do not exceed the detection threshold for 10 sub-
sequent frames. This reduces the number of target losses
within a track.

The robust tracking module operates on the list of cur-
rent targets. For each target, a search region and a Gaus-
sian mask centered on the most likely position are deter-
mined. The targets are then updated by collecting data from
the detection module that processes the search region and
computes first and second moments of the energy image
weighted by the Gaussian mask. The Gaussian mask makes
the tracking robust to outliers and reduces the error intro-
duced by the above shortcut.

After the update step of each target, the module manages
split and merge of targets. The distance between close tar-
gets is measured. If this distance is smaller than the merge
threshold, the targets are merged.

For splitting of targets, the module performs a connectiv-
ity analysis of the pixels within the bounding box. The ROIs
are general small. For this reason, the connected component
computation does not slow down too much the processing.
If there are several components, their distance is evaluated
and if this distance is greater than the split threshold, the
target is split into its components.

7.2. Parameterization
The performance of the tracking system depends on the cor-
rect choice of the parameters. In many systems, these pa-

Figure 2: Example frame of the evaluation database.

rameters are set manually. In this article, we use an au-
tomatic parameter regulation technique [4] that selects the
best parameter setting with respect to an output quality met-
ric. The system can monitor 5 entry regions and track ro-
bustly up to 8 targets in images of384× 288 pixels at 30Hz
on a 2 GHz processor.

8. Experiments
In this section we evaluate the performance of the methods
BBS(Section 2),W4 (Section 3),SGM (Section 4),MGM
(Section 5), andLOTS(Section 6) on the same data set. In
addition we evaluate the tracking system described in Sec-
tion 7 in the same way. This is to demonstrate the increase
in performance when a detector is enhanced with temporal
filtering.

The CAVIAR entry hall sequences [3] (27 sequences)
are partitioned into 14 sequences for testing (13692 frames,
21217 boxes) and 13 sequences for training (12023 frames,
18411 boxes). This database contains people interacting in
an entry hall of a public building at different times of the
day (see Figure 2). The light regions are close to the sat-
uration point of the camera and move within the sequence.
These are indoor sequences, but we need to deal with typi-
cal problems of outdoor scenes.

The comparison is based on manually annotated ground
truth. The annotaters were instructed to draw a bounding
box around each individual and also around each group of
individuals. Individuals are labelled only once they start
moving. The receptionist is considered as background even
when moving. Groups are defined as two or more individ-
uals that interact. Groups can not be determined only by
analysing the spatial relations between individuals which
makes the detection and tracking very difficult for artificial
systems. For this reason, we decide to restrict the evaluation
only to individual bounding boxes.

Comparison with the hand labelled ground truth causes
several problems that we want to mention here and which
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may help when interpreting the results. The detectors are
based on background differencing and require a reference
image of the background for initialisation. Ideally, this
background image should represent the empty scene. Due
to the mobile light region, we need a different background
image for each sequence. In several sequences, people are
present in the first frame. Taking the first frame as a refer-
ence would incorporate those people into the background.
Each detector requires a different type of background ini-
tialisation. For this reason, we defined individual protocols
for background initialisation that does not penalise the de-
tector.

The detectors perform a connected components analysis
to segment the targets from the background. Two individ-
uals walking side by side may be detected as one target.
There are 1656 such cases in the test sequences. Without
higher level recognition and interpretation, it is impossi-
ble to separate the two individuals. The reader should be
aware that this causes additional missed and inserted targets
which reduces the numerical value of the detection rate. On
the other hand, the comparison between the detectors is still
valid, since all detectors compute connected components.

The ground truth labelling depends on the subjective
judgement of the annotator concerning when an individual
starts moving and also which objects to annotate. For more
details please see [7] that evaluates the ground truth of a
sequence produced by three independent annotators.

The system performance is measured for each method
by the measures proposed by Black, Ellis and Rosin in [1].
Since we are comparing the performance of detectors, we
are missing the temporal coherence of tracks. For this rea-
son we use only a subset of the performance measures,
namely the Tracker Detection Rate (TRDR) and the False
Alarm Rate (FAR). These values are obtained by determin-
ing for each frame the best matching pairs of detected and
ground truth bounding boxes.

TRDR =
TP

TP + FN
FAR =

FP
TP+ FP

(20)

with TP correct (true positive)FP insertion (false posi-
tive), FN missed (false negative).

TRDR and FAR are given for a particular overlap thresh-
old T (see eq 21). In addition we compute the area under
the curve (AUC) for TRDR and FAR as in [8]. The AUC in
this article is computed by the mean of the values sampled
between [0.0,1.0] with steps of 0.001. AUC is a compari-
son measure with the advantage that it is independent of a
particular overlap threshold. A perfect system would have
AUC of TRDR of 1.0 and AUC of FAR of 0.0.

Figure 3 and Figure 4 display respectively TRDR and
FAR of the different methods evaluated on the test se-
quences. Table 1 shows the TRDR and FAR with an overlap

Method Tracking Detection Rate (TRDR)
% atT = 50% abs values AUC

BBS 42.5 9024/21217 0.379
W4 11.7 2473/21217 0.209
SGM 42.8 9075/21217 0.380
MGM 38.2 8097/21217 0.373
LOTS 47.9 10161/21217 0.375
Track 44.4 9425/21217 0.348

False Alarm Rate (FAR)
% atT = 50% abs values AUC

BBS 72.4 23710/32734 0.754
W4 92.1 28921/31394 0.858
SGM 54.0 10636/19711 0.591
MGM 63.3 13984/22081 0.642
LOTS 40.3 6851/17012 0.533
Track 35.2 5111/14536 0.493

Table 1: Comparison of TRDR and FAR of the methods
evaluated on the test sequences.
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requirement of 50%. A correct match is registered, when
the bounding boxes of the targetsAobs andAtruth overlap
at leastT = 50%.

Aobs ∩Atruth

Aobs ∪Atruth
≥ T (21)

with

A(x, y, w, h) = [x− w

2
, x +

w

2
]× [y − h

2
, y +

h

2
] (22)

All methods (exceptW4) have similar TRDR (for an
overlap of 60%). The methodW4 seems not to be appro-
priate for the task. In general, we observe TRDR values
between 35% and 80% as a function of overlap. These val-
ues seem to be quite low for a detection system, but at the
same time show the difficulty of the sequences. The main
reason for these values are related to the ground truth la-
belling discussed above. The methodMGM has the best
TRDR for high overlap thresholds, which means that the
size estimates are quite good. This is due to the connected
component analysis of the methods for bounding box esti-
mation.

Another important value for performance evaluation is
the False Alarm Rate (FAR). The methodLOTSproduces
the best (lowest) values. The next best performing algo-
rithms areSGMfollowed byMGM. The simple methodBBS
has a good TRDR, but at the same time a very high num-
ber of false detections increase the FAR which makes the
method less suitable.

In the experiments, several problems occurred. Groups
of persons are perceived as single targets by the detectors.
For small overlap requirements, these cases are counted as
one correct match and one missed target. For large overlap
requirements (since the bounding box covering both per-
sons is larger), these cases are reported as two missed tar-
gets and one insertion.

All detectors build a background model from several
frames. Anything that is not part of this learned background
is detected. The ground truth labels targets only once they
start moving. This causes a lot of insertions by the detec-
tors, since persons waiting but not moving and the person
at the reception desk are systematically detected, but not la-
belled in the ground truth. To remove the false detections of
the receptionist, we declared a region of no detection around
the reception desk.

The hand labelling chooses the smallest bounding box
that covers the target. The methodLOTSuses the result
of the QCC algorithm for bounding box computation. The
QCC is a faster but less precise version of a connected com-
ponents algorithm. This explains the stronger decrease of
TRDR for high thresholds.

To demonstrate the performance increase when a detec-
tor is combined with temporal filtering, we choose theBBS

method as detector for the real time tracking methodTrack.
The main result is that the method achieves similar TRDR
rates, but the temporal filtering and the use of detection re-
gions reduces significantly the FAR. The use of detection
regions also causes all targets that are within the scene at
the beginning of the sequence to be missed. Despite these
design decisions with respect to speed, the FAR is half that
of the methodBBS. The enhancement of the other detectors
with temporal filtering may also reduce the FAR and allow
optimization of computation speed.

Table 2 shows additional statistics for the targets with
an overlap of50%. All methods have equal position errors.
The observation concerning the size is confirmed with these
statistics. Track andLOTSare much faster than the other
approaches with a small decrease of the quality of the size
estimate. The use of detection regions inTrackincreases the
time lag for initial target detection which is compensated by
very good results in continuously tracking targets once they
are detected (small number of dropped frames).

9. Conclusions

We presented five adaptive background differencing tech-
niques with background models of different complexity.
These approaches were evaluated on indoor sequences with
difficult lighting conditions with respect to manually la-
belled ground truth. The methods LOTS and SGM produce
better results than MGM that uses a more complex back-
ground model. The same result has been observed previ-
ously [9] and may be related to the type of the database.

Several problems occurred in the experiments which re-
duces the numerical value of the TRDR and FAR. These
problems are mainly related to the comparison with respect
to the ground truth. The detectors can not distinguish indi-
viduals of groups and detect also immobile targets whereas
those targets are considered as background. This fact signif-
icantly reduces the detection and false alarm rate of the de-
tectors. The comparison between the detectors is still valid,
because all detectors encounter the same difficulties.

We demonstrated the reduction of FAR by combining
the BBSmethod with temporal filtering within a real time
tracking architecture. An important goal of this architecture
is also to reduce computation time. Several design deci-
sions were made with respect to speed that reduce the qual-
ity of the tracking. Nevertheless, the system obtains the
same TRDR rate and significantly reduces the FAR. This
combination should be seen as an example and the proposed
architecture allows other detector types to be enhanced with
temporal filtering.
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Error BBS W4 SGM MGM LOTS Track
Metric [unit] mean (std.) mean (std.) mean (std.) mean (std.) mean (std.) mean (std.)
position [pix] 4.9 (4.5) 5.0 (4.8) 5.0 (4.4) 5.1 (5.8) 5.0 (5.3) 5.2 (5.8)

size [%] 3.1 (24.2) 5.6 (23.6) -1.6 (18.5) -0.2 (24.5) 33.5 (33.3) 11.7 (98.2)
entry [frames] 34.4 (47.5) 38.6 (126.7) 34.4 (48.2) 40.1 (45.2) 39.1 (131.1) 107.9 (193)

dropped [frames/100] 20.4 (26.5) 41.5 (27.5) 21.7 (26.8) 28.0 (29.0) 14.4 (22.4) 8.8 (14.5)
processing time [Hz] 8.3 16.7 4.5 2.8 130 70

Table 2: Additional error metrics at 50 % overlap.
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