

Abstract

We propose an XML-based Computer Vision Markup
Language for use in Cognitive Vision, to enable separate
research groups to collaborate with each other as well as
making their research results more available to other
areas of science and industry, without having to reveal
any proprietary ideas, algorithms or even software. The
Computer Vision Markup Language can communicate
any type and amount of information, making unavailable
functionality accessible to anyone. In this paper we
introduce the language and describe how we have
implemented it in a very large cognitive vision project.
We provide a free open source library for working with
this language, which can easily be implemented into
existing code providing seamless network communication
abilities and multi-platform support. Last we describe the
future of CVML and how it might evolve to include other
areas of research.

1. Introduction

The last 20 years have seen a remarkable amount of
progress in the abilities and usability of Computer Vision
and one is left to wonder why we still only see very
individual and proprietary use of this work, both in
research and in industry. Admittedly, there is a lot of
collaboration between groups working in the field, but
even these find it very hard to integrate existing research
into new projects. This is partly because most people are
concerned about protecting their own ideas and IPR, but
equally because each group has their own ways of
working, has existing code which is not reused much if at
all and finally, because they do not communicate with
other groups early enough in the project.

The result is a lot of research which is incompatible

with the work of other groups. The algorithms are
different, the software architectures are proprietary and
the results are only presented in papers as graphs and
summaries.

There have been several attempts to unite existing

efforts in Computer Vision. There are many commercial
packages with proprietary representations, but two of the
most widely used or promoted are Intel’ s OpenCV [2]
and DARPA’s Image Understanding Environment [3].
They offer large amounts of built-in functionality and
library routines, but most of these require that all or most
of the basic components be built on their l ibraries using
their data structures. They offer little or no support for
networking or distributed programming and very few
even try to work on more than one platform.

MPEG 7 [4] is a good candidate for a Computer

Vision interface language. It is versatile, works with
many types of software and hardware, has the ability to
tag specific information in each or multiple frames, and
is globally recognized as a standard [4]. However,
anyone who has ever worked with MPEG knows that it is
usually complicated to work with. There is a need for
very large – and usually not free – libraries to be
included, the data encoding is highly asymmetrical, and
the standard is not open enough for people to add their
own data types at will. It takes a lot of time to change
existing software to work well with MPEG; time that
most people do not wish to spend.

We need to accommodate the way people work in this

field where the majority create their own software, not
compatible with any of the major libraries and very few
agree on which platform to use. We need a language
which does not change this, but works along side with it
while providing a strong interface to the work of others.

2. Computer Vision Markup Language

With the introduction of a common data interface

specifically designed for Computer Vision one would
enable compatible projects to work together more easily,
if not as a unit then as modules in a larger setting. The
unique abilities of one group would be accessible to
others without giving away any secrets. We have created
a language which is easily combined with existing code,

CVML – An XML-based Computer Vision Markup Language

Thor List and Robert B. Fisher
School of Informatics, University of Edinburgh, UK

thor.list@ed.ac.uk

and a library which people can use if they wish which
runs on all major platforms.

This interface is simple enough so nobody would have

to spend too long implementing it, versatile enough to
encompass many of the possible needs of functionality,
extendible so each group can add their own additional
information sources and lastly is partially parse-able.
This means that there might be auxiliary information in
the data, which can safely be ignored if not understood or
expected.

There is one such language already available which

has been widely used, namely the XML standard. This
has all of the abilities required and furthermore, already
is a worldwide institution. It is human-readable even
without tools, but viewing can be enhanced with standard
applications such as Internet browsers and editors.

3. What is XML?

The World Wide Web Consortium (W3C) designed a

general mark-up language in 1974 called Standard
Generalized Mark-up Language (SGML), which was
adopted as an ISO standard in 1986. This paved the way
for the well-known Hyper Text Mark-up Language
(HTML). In 1998 a simplified version of SGML (which
has proven too complex to use generically) called
Extensible Mark-up Language or XML was proposed,
which carried most of the features of SGML and HTML
such as the extensibility, the hierarchical structure and
the possibility of validating the information (or parts
thereof) contained in a document [1].

XML is hierarchical by nature and usually contains

nested structures of tagged pieces of information. Each is
well described and isolated in such a manner that parsers
more easily can extract partial information as needed
without caring about the rest. For example, given this
XML fragment

<mydataset var1=”hello” var2=”world”>
 <mydata seq=”22”>...</mydata>
 <otherdata map=”8”>...</otherdata>
</mydataset>

if the parser knows about mydataset and mydata, but
does not expect otherdata, the latter can be ignored.

This makes XML ideal as an interface language for

Computer Vision where a part of a system or a module in
a larger application has vast amounts of information to
convey to others, who might be interested in some or all
of it. Although XML is not specifically designed to carry
binary data such as images it can easily be implemented,
either embedded or as separate data packages.

4. The Proposal

The Computer Vision Markup Language (CVML)

should have the ability to carry any “vision” information
one could think of, but an overall structure is needed,
describing the content. Standard data commonly used
needs to be specified by an agreed format or range of
formats. Some of these might be coordinate systems,
time or frame count information, areas or enclosures in
images, trajectories, contours and gradients.

We have defined an initial set of tags to illustrate the

approach. Below we list all of the tag names (at the time
of writing) and then we give a detailed description of
some of these, followed by an example of how real
information is carried using these structures. A more
complete description of the tag grammar plus parsers for
the tags can be found at

http://www.mindmakers.org/projects/cvml

4.1 L ist of Tags

Figure 1 shows the current set of tag names in use.

These are ordered from smaller to larger data structures.

Figure 1: List of current tag names

4.2 Tag Implementation

Time has always been a troublesome entity as

Computer Vision groups hardly ever agree whether to
use real time, frame reference time or frame counters. We
propose allowing people to specify any quantity they find
useful, along side with one or more standard
specifications. The XML for this would be

 <time sec="1064500814" ms="48" frame="3345" ... />

The ‘ ...’ allows many more voluntary information
types to be added, but either a global time or a frame
counter should be provided.

Basic Types: integer float module
 string color sequence
 time size scene
 point pointfloat image
 line polyline contour
 box circle coordinatesystem

Collections: vector list collection
 dictionary timeseries sortedcollection

Binary Data: xbin bindata raw

Structures: pointfeature linefeature polylinefeature
 areafeature featurevector featurevectorlist
 group grouplist subgrouphierarchy
 grouptracker temporalgroup temporalgrouplist

Another useful entity is location, whether in images or
scenes. It can be given as a coordinate, as an offset, with
or without a size. To accommodate this we created a
point structure, which can be two- or any-dimensional,
optionally with a size specification attached.

<point x="0" y="0" z="0" ... >
 <size width="0.0" height="0.0" depth="0.0" ... />
</point>

One can choose to represent the coordinates as the much-
used x,y, as i1,i2,...,iN or as polar coordinates. Other
optional parameters might be direction, speed and
principal axes.

Lists of information are often used in the form of
vectors of numbers or strings. We have tried to generalise
these to encompass all types of lists and dictionaries.

Collection Dictionary

<collection> <dictionary>
 <entry>...</entry> <entry name="...">...</entry>
 <entry>...</entry> <entry name="...">...</entry>

</collection> </dictionary>

ObjectCollection ObjectDictionary

<objectcollection> <objectdictionary>
 <object>...</object> <object name="...">...</object>
 <object>...</object> <object name="...">...</object>

</objectcollection> </objectdictionary>

Of course, collections can contain other collections,
making good use of this as a fully hierarchical language.

It will always be necessary to work with binary data in

a variety of formats, such as images in memory or in
files. A binary data descriptor, such as the Binary
Description Language (BinX) [5] detailing the ordering
of information, byte lengths, etc. will enable others to
read your binary data fully or semi-automatically. The
binary data is held elsewhere, but fully described in the
XML.

The Binary Data Descriptor is written as

<binx>
 <dataset>
 <integer-32 />
 <float-32 />
 <array type=”fixed”>
 <double-64 />
 <dimindex to=”9” />
 </array>
 </dataset>
</binx>

Features are a common tool to symbolically express
traits of objects or locations found in images or image
spaces. Most are described by having a physical location
or boundary, by a time or duration and by a set of values,
representing the specific type of feature in question.

A featurevector , for example, would be represented
by a coordinate location i1,i2, a timestamp of the image it
was found in, and a vector of double values

<featurevector i1="2" i2="3">
 <time sec="1066231619" ms="880" />
 <vector type="double">
 <entry>6384220.9</entry>
 ...
 </vector>
</featurevector>

Sets of feature vectors are wrapped in a <featurevectorlist>.

Reporting tracked entities in a scene is done with the
<entity> tag, where data such as the bounding box and
orientation, but also high-level information such as role
and scenario is provided. Groups of entities have their
own bounding box, role and scenario, and this is output
for each frame in a video sequence.

<sequence name="Fight_OneManDown">
 <frame number="192">
 <entitylist>
 <entity id="1">
 <orientation>151</orientation>
 <box x="81" y="101" w="31" h="21" />
 <appearance>visible</appearance>
 <movement>walking</movement>
 <role evaluation="1.0">walker</role>
 <event evaluation="1.0"></event>
 <scenario evaluation="1.0">immobile</scenario>
 <situation evaluation="1.0">moving</situation>
 </entity>
 </entitylist>
 <grouplist>
 <group id="0">
 <orientation>103</orientation>
 <box x="228" y="110" w="55" h="126" />
 <entities>4,5</entities>
 <appearance>appear</appearance>
 <movement>active</movement>
 <role evaluation="1.0">fighter</role>
 <event evaluation="1.0"></event>
 <scenario evaluation="1.0">fighting</scenario>
 <situation evaluation="1.0">merge</situation>
 </group>
 </grouplist>
 </frame>
</sequence>

Group hierarchies specify that one group is a member
of another group, as a set of Gid1 ⊂ Gid2

<subgrouphierarchy id="id">
 <parent id="id1" />
 <child id="id2" />
</subgrouphierarchy>

4.3 Example of use

Imagine that we have a system with a number of

modules to process images captured from a video
camera. We could have two modules A and B, each
finding features in the images, outputting lists of feature
vectors, to be read by other modules, one of these a
feature grouping module C, whose job it is to group
features into spatial groups. Module C then outputs both

...
1010 0010
1001 1110
1000 0001
1000 1010
1001 1010
1010 0101
...

the groups of features which it found as well as a list of
which groups are contained in other groups as members.

The output from module A would be a feature vector

list with features, coordinates and frame time. Module B
would output the same format, but with some additional
information as it was also required to calculate feature
spatial densities. Module C knows nothing about feature
spatial density and will safely ignore this while still
understanding all the feature vectors. After processing all
the vectors from both modules, module C produces an
output containing groups of features and group pairings
to show individual group memberships.

The CVML language is also used in the hand-labelled

ground truth datasets of more than 80 video sequences –
monitoring street scenes and shoppers, made publicly
available as part of the CAVIAR project at

http://homepages.inf.ed.ac.uk/rbf/CAVIAR

5. The Free CoreLibrary

Software for directly manipulating the language could

easily be written into each module, but the full free
version of the CoreLibrary made generating and parsing
of the XML much easier, especially with its multi-OS
support and seamless network integration. It is free to use
by anyone and is available for download at

http://www.cmlabs.com/corelibrary

It provides full support for the CVML, along with

many objects and interfaces, making networking, multi-
threading and data parsing very easy on multiple
platforms, including Linux, Windows, MacOSX and
PocketPC. It is distributed both as source and a binary
library ready to be linked with existing software.

6. What have we found?

XML has some weaknesses in that it tends to become

rather voluminous and therefore can both be hard to read
for humans and can take time to parse for computers.
Tools exists that assist human-readability of sections at a
time and the addition of partial parsing would greatly
improve the speed of the parsing.

7. The Future

CVML is intended to be extensible and evolving,

promoting collaboration between many different
branches of Computer Vision and Image Analysis. It is
our hope that it can be extended to bridge the gap to

industrial use, such as in entertainment, robotics and
medicine. The CVML website will be central to the
further development of the language and is found on

http://www.mindmakers.org/projects/cvml

CVML is now part of the growing Mindmakers.org

network, designed to promote collaboration between
groups working within all areas of artificial intelligence.
Here people can discuss issues and ideas, as well as help
the development of common principles in A.I.

8. Conclusion

We have proposed a new XML-based computer vision

data interface language called CVML to enable research
groups to more easily work together. The language
provides the ability to interface with information sources,
allowing access to both known and unknown types of
data, without prior knowledge about the source itself.

We have provided a free software library called the

CoreLibrary which will assist people getting started with
the language with minimal overhead and little change to
their existing software.

Acknowledgments

This research was supported by the CAVIAR project,

funded by the EC's Information Society Technology's
programme project IST 2001 37540. We would like to
thank David Hogg for suggesting that we promote this
language as a standard.

References

[1] David Mercer, XML: A Beginner’s Guide, McGraw-Hill
Osborne Media, 2001

[2] Gary Bradski, “The OpenCV Library” , Dr. Dobb’s Journal
November 2000, Computer Security, 2000

[3] Charles Kohl and Joe Mundy, “The Development of the
Image Understanding Environment” , CVPR 94, pp. 443—447,
http://citeseer.nj.nec.com/95374.html, 1994

[4] Fernando Pereira and Rob Koenen, “MPEG-7: A Standard
for Multimedia Content Description” , International Journal of
Image and Graphics Vol 1(3), pp. 527—547, 2001

[5] Martin Westhead, Ted Wen and Robert Carroll, “Describing
Data on the Grid” , Fourth International Workshop on Grid
Computing, pp. 134—141, Phoenix Arizona, 2003

