

Morphing

- Given two images, create a series of intermediate images that blend them.

From The Computer Image by A. Watt \& F. Policarpo

Morphing: How?

- Objects being morphed may vary in
- Shape
- (Apparent) color
- We will interpolate both properties
- A grid of matching "control points" will dictate how shape is interpolated
- We will use a two-pass technique
- Pixel values will be linearly interpolated between frames
- Extension: add a photometric "knot vector" to dictate the rate of pixel interpolation

Representing Shape

- Lay a 4×4 grid of control points over source image

- Fit a Bezier curve to each column of points (green)
- Later, we will Fit a Bezier curve to each row of points (red)

Shape (II)

- Do the same thing for the target image
- Control points should match across images
- Movement of control points between images determines the shape deformation
- General idea is to
- interpolate control points between images
- Use control point splines to interpolate other pixels

2-Spline Mesh Warping

- Goal:
- Create N intermediate frames between image A and image B, with
- 16 control points in each: $\mathrm{C}_{\mathrm{p}} \mathrm{A}_{\mathrm{i}, \mathrm{j}} \& \mathrm{C}_{\mathrm{p}} \mathrm{B}_{\mathrm{i}, \mathrm{j}}$ - $1 \leq \mathrm{i}, \mathrm{j} \leq 4$
- Step 1: place control points in intermediate image
- High end movies: place by hand
- Otherwise: linearly interpolate

2-Spline (II)

- Step 1 (cont.):
- For each control point, compute position in new image:

$$
M_{i, j}=C_{p} A_{i, j}+\frac{F}{N+1}\left(C_{p} B_{i, j}-C_{p} A_{i, j}\right)
$$

- F is frame number; N is number of (intermediate) frames
- This creates an intermediate grid of control points
- Step 2: Fit 4 Bezier curves (or BSplines) through the columns of control points in A \& F

2-Spline (III)

- Step 3: For every row Y
- Calculate scan-line intersections with the four Bezier curves in A
- Do the same for the curves in F
- Every control point now has two x-intercepts, one in A and one in F :

2-Spline Illustration

- At this point, you should have two grids with Bezier curves:

From The Computer Image by A. Watt \& F. Policarpo

2-Spline (IV)

- For every row Y (cont.):
- Fit a curve to the 4 points in this graph:

- This curve now maps x positions in A to x positions in B (and vice-versa) for row Y

2-Spline (VI)

- Create $\mathrm{F}_{\mathrm{B}, \mathrm{xy}}$ by repeating steps 1-5, except:
- Swap B for A
- Create F by doing a pixelwise weighted average of $\mathrm{F}_{\mathrm{A}, \mathrm{xy}}$ and $\mathrm{F}_{\mathrm{B}, \mathrm{xy}}$

$$
F(x, y)=\frac{F}{N+1} F_{A, x y}(x, y)+\left\lceil 1-\frac{F}{N+1}\left\lceil F_{B, x y}(x, y)\right.\right.
$$

$$
\mathrm{F}_{\mathrm{A}, \mathrm{xy}} \text { and } \mathrm{F}_{\mathrm{B}, \mathrm{xy}}
$$

Bezier Curves (review)

Fitting Bezier's

- Bezier curves are $3^{\text {rd }}$ order curves:

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{y} \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}
\end{aligned}
$$

- Notice that nothing changes in 2D (vs 3D)
- Bezier's are fit to data using the Basis matrix:

$$
Q(t)=T\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
-3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\left[\begin{array}{cc}
P 1_{x} & P 1_{y} \\
-P 2_{x} & P 2_{y}-P 3_{x} \\
P 3_{x} & P 4_{y}
\end{array}\right]=\right.
$$

- So, for example,

$$
a_{x}=-P 1_{x}+3 P 2_{x}-3 P 3_{x}+P 4_{x}
$$

Applying Bezier's

- How do you find scan-line intersections with a Bezier curve?
- By definition, $\mathrm{y}(\mathrm{t})$ is known (it's the scan line)
- So are all a's, b's, c's and d's.
- Plug $\mathrm{y}(\mathrm{t})$ into Bezier equation:

$$
y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}
$$

- Solve for t (fortunately, we know how to solve $3^{\text {rd }}$ order equations!)
- Calculate $\mathrm{x}(\mathrm{t})$!

The Assignment

- Write a program that takes as input:
- Source image A + a file of 16 control points
- Target image B + a file of 16 control points
- N , the number of intermediate frames
- It should generate N intermediate images
- Possible Extensions:
- Allow different sized input \& output (requires filtering)
- Allow bicubic as well as bilinear interpolation
- Use BSplines instead of Bezier curves
- Add perspective transformations

