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Introduction 
Many of the problems that arise in early vision can be naturally expressed in terms of energy 
minimization. For example, a large number of computer vision problems attempt to assign labels 
(such as intensity, disparity, segmentation regions) to pixels based on noisy measurements. In the 
presence of these uncertainties, finding the best labelling may therefore be seen as an 
optimization problem. In the last few years, minimum cut/maximum network flow algorithms 
have emerged as an elegant and increasingly useful tool for exact or approximate energy 
minimisation. The basic technique is to construct a specialized graph for the energy function to 
be minimized such that the minimum cut on the graph also minimizes the energy (either globally 
or locally). The minimum cut, in turn, can be computed very efficiently by max flow algorithms. 
These methods have been successfully used for a wide variety of vision problems, including 
image restoration [4, 5, 6, 7], stereo and motion [9, 10, 11, 12, 13, 14, 15], image segmentation 
[16], multi-camera scene reconstruction [17], and medical imaging [18, 19, 20, 21]. Although 
network flows have been traditionally used to solve problems in physical networks, often a large 
variety of problems which have no inherent physical network can also be modelled using a 
network and a notion of flow in such a network.  

1. The Pixel Labelling Problem 
The classical use of energy minimization is to solve the pixel labelling problem, which is itself a 
generalization of such problems as stereo, motion, and image restoration. In the pixel labelling 
problem, the variables represent individual pixels and the possible values for an individual 
variable represent, e.g. its possible displacements or intensities. The input is a set of pixels P and 
a set of labels L . The goal is to find a labelling ( ) LPf a . Figure 1, which is found in [1] 
provides an illustration of the problem.  
 

 
Figure 1: An example of image labelling. An image in (a) is a set of pixels P with observed 
intensities pI for each Pp∈ . A labelling L shown in (b) assigns some label { }2,1,0∈pL  to 
each pixel. Such labels can represent depth (in stereo), object index (in segmentation), original 
intensity (in image restoration), or other pixel properties. Normally, graph-based methods 
assume that a set of feasible labels at each pixel is finite. Thick lines in (b) show labelling 
discontinuities between neighbouring pixels. 
 
Typically, certain visual constraints are used to constrain these labels. In vision and image 
processing, these labels often tend to vary smoothly within the image, except at some kind of 



 - 2 - 

region boundaries where discontinuities are allowed. These constraints are reflected as defining 
the pixel labelling problem in terms of minimising some energy function. A standard form of the 
energy function is  
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Where PPN ×⊂  is a neighbourhood system on pixels, ( )pp fD  is a function derived from the 

observed data that measures the cost of assigning the labels qp ff , to the adjacent pixels, qp, and is used 

to impose spatial smoothness. 

2. Markov Random Fields 
Markov Random Fields is a generative model often used in Image Processing and Computer 
Vision to solve labelling problems. This section briefly introduces the theory of Markov Random 
Fields (MRF), and it is commonly used to model the optimisation problem discussed above. A 
Markov Random Field consists of three sets; a set S of sites, a neighbourhood system N  and a 
set of random variables F . The neighbourhood system { }SiNN i ∈= | , where each iN  is a 

subset of sites of S which form the neighbourhood of site i . The random field { }SiFF i ∈= |  

consists of random variables iF  that take on a value if  from a set of labels { }..., 21 llL = . A 
particular set of labels, often denoted by f is called a configuration of F . The probability of a 
particular configuration f , ( )fFP = must satisfy the Markov property in order for F to be a 
Markov Random Field. 
 

( ) ( ) SiffPffP iNiiSi ∈∀= −− ,||     (2) 
 
This means that the state of each random variable depends only on the state of its neighbours. 
The fact that a particular pixel label depends on the labels of its neighbours allows modelling the 
optimization problem as a MRF. From a probabilistic perspective, one wishes to estimate the 
configuration f based on observed data D that maximises the likelihood function, ( )fDP |  
Using Bayes Theorem, this likelihood function can be expressed as an energy function ( )fE and 
the maximum a posterior (MAP) estimate of f should maximize this energy function. 

3. Energy Minimisation Models 
There are currently two main models used to define the energy function, E , which are chosen 
depending on properties of labelled regions, such as piecewise consistency or discontinuities at 
boundaries. The first model is Potts Interaction Energy Model, which is given as follows: 
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where { }PpII p ∈= |  are the unknown true labels over the set of pixels P and 

{ }PpII p ∈= |oo  are the observed labels corrupted by noise. The Potts interaction are specified 

by ( )qpK , , which are the penalties for label discontinuities between adjacent pixels. The 
function T is an indicator function. Potts model is useful when the labels are likely to be 
piecewise constant with discontinuities at boundaries. The Pott energy can be optimally solved 
for binary labelling using max-flow, however the multiple label case is NPO-hard. 
 
The second model is the Linear Interaction Energy Model: 
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The fundamental difference between this and the Pott equation is the inclusion of constants 

( )qpA , , which stores the importance of the interaction between neighbouring pixels p and 
q .Unlike the Pott Energy Model, the Linear Interaction Energy produces labelings which are 
piecewise smooth, but with discontinuities across boundaries. 

4. Pixel Labelling as a Graph Cut problem 
Greig et al. [4] were first to discover that powerful min-cut/max-flow algorithms from 
combinatorial optimization can be used to minimize certain important energy functions in vision. 
In this section we will review some basic information about graphs and flow networks in the 
context of energy minimization. A directed weighted graph ( )VEG ,=  consists of a set of 
nodes V and a set of directed edges E that connect them. Usually the nodes correspond to 
pixels, voxels, or other features. A graph normally contains some additional special nodes that are 
called terminals, usually called the source Vs∈  and the sink Vt ∈ . In the context of vision, 
terminals correspond to the set of labels that can be assigned to pixels. In Figure 2(a) we show a 
simple example of a two terminal graph (due to Greig et al. [4]).  
 

 
Figure 2: Example of a directed capacitated graph. Edge costs are reflected by their thickness 
 
Normally, there are two types of edges in the graph: n-links and t-links. n-links connect pairs of 
neighbouring pixels or voxels. Thus, they represent a neighbourhood system in the image. The 
cost of n-links corresponds to a penalty for discontinuity between the pixels. These costs are 
usually derived from the pixel interaction term qpV ,  in energy equation (1). T-links connect 
pixels with terminals (labels), and the cost of a t-link connecting a pixel and a terminal 
corresponds to a penalty for assigning the corresponding label to the pixel. This cost is normally 
derived from the data term pD in equation (1). 

4.1 Network Flow 
The fundamental network flow problem is the minimum cost flow problem; that is, determining 
a maximum flow at minimum cost from a specified source to a specified sink. A flow network 
( )EVG , is formally defined as a fully connected directed graph where each edge ( ) Evu ∈,  has 

a positive capacity ( ) 0, ≥vuc . A flow in G is a real-valued function RVXVf →: that satisfies 
the following three properties: 



 - 4 - 

 
Capacity Constraint: 
For all ( ) ( )vucvufVvu ,,,, ≤∈  
 
Skew Symmetry: 
For all ( ) ( )uvfvufVvu ,,,, −=∈  
 
Flow Conservation: 
For all { }( ) ( ) 0,,, =−∈ ∑ ∈Vu

vuftsVu  
 
The value of a flow is defined as ( )∑ ∈

=
Vu

vsff , , and interpreted as the total flow out of the 

source in the flow network G . 

4.2 Min Cut 
An ts − cutC of flow on a graph with two terminals is a partitioning of the nodes in the graph 
into two disjoint subsets S and T  such that the source s is in S  and the sink t is in T . For a 
given flow f , the net flow across the cut ( )TS ,  is defined as: 
 

( ) ( )∑∑
∉ ∈

=
Sx Ty

yxfTSf ,,     (5) 

 
The capacity of a cut ( )TS ,  is defined as: 
 

( ) ( )∑∑
∉ ∈

=
Sx Ty

yxcTSc ,,      (6) 

 
A minimum cur of a flow network is a cut whose capacity is the least over all the ts −  cuts of 
the network. An example of a flow network with a valid flow is shown in figure 3, and a 
minimum cut in the context of image segmentation is shown in figure 4. 
 

 
Figure 3: Taken from Cormen et. al. [15], this figure shows a flow network ( )EVG , with a valid 

flow f . The values on the edges are ( ) ( )vucvuf ,/, . The current flow has value 19, it is not a 
maximum (as explained later.) 
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Figure 4: Graph cut/flow example in the context of image segmentation in Section (taken from 

[1]). Red and blue seeds are “hard-wired” to the source and the sink, respectively. As is common 
in this approach, the cost of edges between the pixels (graph nodes) is set to low values in places 
with high intensity contrast. Thus, cuts along object boundaries in the image should be cheaper.  

4.3 Determining Min Cut: Max-Flow / Min Cut Correspondence 
One of the fundamental results in combinatorial optimization is that the minimum ts − cut 
problem can be solved by finding a maximum flow from the source s to the sink t . Loosely 
speaking, maximum flow is the maximum “amount of water” that can be sent from the source to 
the sink by interpreting graph edges as directed “pipes” with capacities equal to edge weights. 
The theorem of Ford and Fulkerson states that a maximum flow from s to t saturates a set of 
edges in the graph dividing the nodes into two disjoint parts{ }TS , , corresponding to a minimum 
cut. Thus, min-cut and max-flow problems are equivalent. 
 
Theorem 1: The max-flow min-cut theorem. If f is a flow in a flow network ( )EVG ,=  with 
source s and sink t , then the value of the maximum flow is equal to the capacity of a minimum 
cut. The proof can be found by referring to Cormen et. al. [15]. 

4.4 Max-Flow Algorithm 
The polynomial algorithms for the single-source single-sink max flow problem can be divided 
into two classes, algorithms based on the Ford Fulkerson method and those based on the 
Push-Relabel. method. The two contrasting approaches are briefly described below, with 
appropriate references for a fuller treatment. 
 
4.4.1 Ford and Fulkerson Algorithm 

The algorithm is best explained by segregating it into its two parts, which Ford and Fulkerson 
called Routine A and Routine B, respectively. The first is a labelling process that searches for a 
flow augmenting path (.e., a path from s  to t  t for which cf < along all forward arcs and 

0>f along all backward arcs. If Routine A finds a flow augmenting path, Routine B changes 
the flow accordingly. Otherwise, no augmenting path exists, and optimality of the current flow is 
ensured by their theorem: 

Theorem 2:. A flow f  has maximum value if, and only if, there is no flow augmenting path 
with respect to f . 

A fuller understanding of the Ford and Fulkerson Algorithm can be found in [21]. 

4.4.2 The Push-Relabel Method 
The generic Push-Relabel algorithm does not construct a flow by constructing paths from s  to 
t . Rather, it starts by pushing the maximum possible flow out from the source s  into the 
neighbours of s , then pushing the excess flow at those vertices into their own neighbours. This 
is repeated until all vertices of G except s and t have an excess flow of zero (that is, the flow 
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conservation property is satisfied). Of course this might mean that some flow is pushed back into 
s. In contrast to the Ford-Fulkerson method where augmenting the flow operates on the 
complete residual graph, the Push-Relabel algorithms operate locally on a vertex at 
a time, inspecting only its neighbours. Unlike the Ford- Fulkerson method, the flow conservation 
property is not satisfied during the algorithm's execution. A more detailed explanation of the 
Push-Rabel method can be found in [22]. 

5. Applications 

5.1 Image Restoration 
The image restoration problem aims at recovering the original pixel intensities of an image 
when the observed image is noisy. Here the labels are the image intensities and the most 
likely labelling is obtained by minimizing an energy function similar to the ones described in 
earlier sections. The visual constraints exploited here are the fact that image intensities tend 
to vary smoothly in most images except at boundaries. Both the Pott Energy as well as Linear 
Interaction Energy model yields reasonable results. The actual choice of ( )qpK , and 

( )qpA , determines the degree of smoothness in the restored images. Figure 5 shows 
examples from [1]. 

 
Figure 5: Image Restoration Examples taken from Boykov et. al. [1]. (a) Synthetic data : An 
example of a noisy image and its restored version. (b) & (c) Real data; An example ofa noisy 

image and its restored version. 
 

5.2 Stereo 
Dense stereo is a popular method for 3D Reconstruction from two calibrated views of a 
scene. It involves first recovering matching pixels (pixels corresponding to the same 3D 
feature) in the two views and then recovering the depth of the 3D point by triangulation 
(intersecting rays back projected from the two matching pixels). Finding accurate matching 
pairs for all pixels is a difficult problem to solve accurately because often such matching can 
be ambiguous depending on factors like camera baseline, amount of texture in the scene or 
the degree of specularity of objects in the scene. In a stereo pair, matching pixels are 
recovered using disparities. Every pixel ( )jip ,1  in the first image has a particular disparity 

d with respect to the matching pixel ( )jip ,2 . A method called image rectification can ensure 
that corresponding pixels are always on identical scan lines in the rectified image pair. The 
problem of recovering an accurate disparity image can be posed as an energy minimization 
problem using the same MRF framework we have been studying. The problem of stereo is 
identical to the image restoration problem except that here the labels are disparity values. 
Energy models like the Pott Energy, shown in Equation 3 can incorporate such contextual 
information within the MRF framework. 
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Figure 6:  Stereo examples taken from Boykov et. al. [1]. One of the images in a stereo pair along 

with the computed disparity image. Top Row: Tsukuba dataset.  Bottom Row: Tree dataset. 
 
The stereo problem is harder compared to image restoration because of the presence of 
occlusions. Occlusion occur when 3D points are visible in only one of the stereo image pairs and 
are typically found near depth-discontinuities in the scene. Occlusions which make the visual 
correspondence problem harder, can be explicitly modelled in the Energy Minimization 
framework by a modified labelling problem of the following type. Sites in the MRF for this 
modified problem do not represent image pixels but pair of pixels which can potentially 
correspond. The set of labels is { }1,0 where 0 indicates either of the pixels are occluded and 1 
indicates that the pair of pixels are matching. The new energy function is then defined to be: 
 

( ) ( ) ( ) ( )fEfEfEfE soccdata ++=    (7) 
where 

( )
( )
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=
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is the term which imposes a penalty based on intensity differences of matching pixels p and q , 
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is the smoothness term which forces adjacent pixels to have the same or relatively close 
disparities, and  

( )∑
∈

⋅=
U 21 PPp

pocc occludedispTCE  

 
is the new occlusion penalty term which imposes a penalty for making a particular pixel p in the 
stereo image pair 1P or 2P  occluded. ( )⋅T is the indicator function in the above formulation. 
Minimizing the energy function is still NP-Hard but an approximate algorithm based on 
expansion computes a local minimum within a constant factor of the global minimum. 

5.3 Segmentation 
The Pott Energy function, (see Equation 3) comes up again in the context of image segmentation 
where the goal is to group image pixels into logical groups or segments which may represent 
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objects in the scene. In 3D Segmentation, the grouping is done on voxels in volumetric data as is 
typically encountered in medical imaging. Segmentation is typically posed as a binary labelling 
problem where foreground and background constitutes the set of labels typically assigned to pixels or 
voxels. The binary labelling problem for the Pott Energy function as mentioned earlier can be 
optimally solved by a single execution of max-flow. The graph construction and max-flow 
formulation is quite identical to the one for the image restoration problem To get accurate 
segmentations, user input is provided into the labelling problem by allowing the user to pre-label 
(these labels are not allowed to change) some pixels as foreground and some as background. This 
is illustrated in Figure 7. 
 

 
Figure 7: Image Segmentation examples taken from 

Boykov et. al. [1]. Interactive user input is used to guide 
the segmentation. 
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