
Advanced Vision:
Assignment 1

Name: Timothy S. Stirling
Matriculation Number: 0199431

AV-4 Undergraduate Assignment

Date: 03.02.06

Numerical Digit Character Recognition

Numerical Digit Character Recognition is a subset of the better known Optical Character
Recognition, commonly abbreviated to OCR. OCR systems have readily been used in a variety of
situations and have been highly successful in converting typewritten or handwritten text into a
computer readable format. Typical applications for OCR systems include uses by the United States
Postal Service for automatically reading the address of letters for sorting purposes. While OCR is
concerned with the the full range of alphanumeric characters as well as non-alphanumeric characters
such as punctuation marks, Numerical Digit Character Recognition is concerned only with the 10
numeric digits 0-9. This simplification does not prevent the system from having a wide applicability
to real world problems and associated commercial uptake. In many situations only a string of
numeric characters is required to be recognised, e.g. the US zip(post)code of addresses is composed
entirely of numeric characters and the recognition of the zipcode alone is enough to approximately
sort the letters into separate destinations. Another common use of numerical character recognition is
reading bar-codes of products. In any case, the software tools and methods required to perform
numerical recognition are the same as for the unconstrained version and provides more accurate
results.

History
The more general OCR approach has a surprisingly long history dating back to c. 1951 when David
Shepard and Harvey Cook built a machine capable of converting printed messages into machine
language for computer processing with the first commercial system sold in 1955 [1]. In 1965 the US
Postal Service started using this technology to read the name and address on letters and printed a
routing bar code based on the postcode which could be read by cheaper simpler sorting systems. The
Canadian postal service followed suit in 1971. These days OCR technology is commonplace in the
office for scanning and converting letters and documents into a computer readable format using
standard flatbed scanners and cheap software. More recently, with the rise of small portable
computers such as PDAs, the need for recognising handwritten text in real-time has become a
research field of much interest and is an area where much work still needs to be done to obtain
acceptably small error rates and where more complex algorithms are required.

Image Data

The initial step in performing character recognition is acquiring the image data. This is invariant to
the algorithms used and discussed here, and is also problem specific. Commonly the image data is
obtained by standard scanners or even cameras and rarely is any special equipment used. Algorithms
should be made to work regardless of the lighting conditions, paper type and colour or ink used, i.e.
they are noise tolerant. From a basic image containing the text, it is necessary to process this image
in order to separate individual characters. With non-cursive (separate character) text, as is the case
with numeric characters, this process is relatively simple but is not described here. Furthermore, it is
usually necessary to perform image pre-processing in order to make the data translation, rotation
and scale invariant as these effects can seriously disrupt recognition algorithms which mostly work
by comparing image features that are expected to be in a common image position. The image should
also be converted into grey-scale as colour information is of little concern, usually by averaging the
RGB values. The resolution of an extracted character from a typically scanned image (e.g. 300dpi)
can still be fairly large, e.g. 64x64, and hence should contain moderate detail and a lot of
information about the character. However, this image will also contain noise, both environmental
and sensory which we wish to ignore during the recognition process. This grey scale image can be
converted into a vector representation in order to simplify the mathematics, and in this instance
would be of dimension 64² = 4096. It is clear that this is very high dimensional data that can be
CPU and memory intensive to process, especially for a real-time character recognition process

running on a computationally weak PDA system. It is therefore common practice to apply some
form of dimension reduction to reduce the dimensionality and thus the CPU resources required.

Dimension Reduction
Here I will only describe the basics of this field as it is beyond the scope of this article and is a large
and encompassing research area in itself, with no straightforward answers. The aim of Dimension
Reduction (or data reduction) in this case is to throw away unimportant parts of the data, hopefully
including the noise, while retaining the information that is important for applying character
recognition. As already described, a common image size for a single character can be quite large
and result in a very large vector representation. Much less information is required to recognise a
character so it is appealing to reduce the dimensionality leaving only those dimensions that are
necessary to do recognition. These are often called Feature representations because what remains in
essence are the important features of the image. The blank space around the edges and corners
provide little information, but there is a way of knowing more accurately which dimensions are
required. Principle Component Analysis (PCA) is a well known linear dimension reduction
technique often used in machine learning and also in variety of statistical applications. This
technique is linear in that it does not analyse interactions between different dimensions which are
inherent in the character image, but several non-linear techniques also exist.

The PCA algorithm assumes that the data lies close to a hyperplane (figure 1) and thus the
data points can be represented by vectors that span the hyperplane alone [2]. The aim is to represent
the high dimensional data with a low dimensional representation that will approximate the data and
provide the minimum error.

The optimal lower dimensional representation is given by projecting the data onto the eigenvectors
of the covariance matrix of the training data with the largest eigenvalues, a technique common to
the related statistical technique of Factor Analysis. See [2] for algorithmic details and associated
mathematical proofs.

Figure 1: In linear dimension reduction we hope that data that lies in a
high dimensional space lies close to a hyperplane that can be spanned

by a smaller number of vectors [2].

Whatever technique is used we should now have a lower dimensional vector representation
that contains the important dimensions (or features) and is appropriate for recognition purposes.
Character recognition is a form of classification, i.e. to assign novel data to the class it most closely
matches, and so a variety of regular classification algorithms can be used. As with all recognition

algorithms, training, testing and validation datasets are required to allow the learning of certain
parameters.

Nearest Neighbour Classification

This algorithm is basic in design and implementation and yet is also widely used within machine
learning and can provide good results. The idea behind the algorithm is that an item x is most likely
to be of the same class as that of the item to which it is the most similar (figure 2). Similarity in this
instance is often defined as the squared euclidean distance between the two vector representations.
The squared euclidean distances between two points x and y is d(x, y) = (x - y)T (x – y) [3].
However, often other similarity or distance measures are used such as the Mahalanobis Distance [3].

Figure 2
Figure 1: In nearest neighbour classification, a new vector with an unknown
label,?, is assigned the label of the vector in the training set which is nearest.

In this case, the vector will be classified as a 2. [3]

The Algorithm:

To classify a new vector x, given a set of training data (xμ ,cμ), μ = 1,...,P: where xμ
represents the set of training data points, cμ is the set of class labels for each data point in
the training set, e.g. 0-9 for numerical digit characters, and P is the size of the training set.

1. Calculate the distance between the test point x and each of the stored data points,
dμ = d (x, xμ).

2. Find the training point xμ* which is closest to x by finding that μ* such that
dμ* < dμ for all μ = 1,....,P.

3. Assign the class label c(x) = cμ* .

When there are two or more `equidistant' points with different class labels, the most
numerous class is chosen. If there is no one single most numerous class, we can use the K-nearest-
neighbours algorithm extension. With K-Nearest neighbours, instead of choosing the class of the
nearest data point, the K (e.g. 5) nearest points are selected and the most numerous class of this set
is assigned. This method has the advantage in that it is more robust to outliers (noise) in the training
data as not a single data point is relied upon but a neighbourhood of K points. The value of K can be
set to various different sizes; a value of 1 will make the algorithm perform equally to the basic
Nearest Neighbours method described above, while K tends towards P then the classification of a
new point will depend only on the most common classification in the training set, and thus some
optimal value for K exists. This optimal value can be discovered by way of a generalisation
method, using the set aside test data to test the performance for different values of K. The typical
error-rate on handwritten numeric characters can be as low as 2-3% for a 2-class problem
classifying 1s and 7s, which is a good performance for such a simple algorithm.

Neural Networks for Character Recognition

Neural networks are commonly used for digital character recognition: partly because of their
popularity and appeal, but undoubtedly they provide excellent results, perhaps among the best
known for character recognition. The inherent pattern recognition abilities of layered neural
networks lends itself perfectly to this type of task, by autonomously learning the complex mappings
in high dimensional input data [4]. There are various forms of multi-layered neural network
models, the most common and applicable to this task being the standard feed-forward connectionist
model usually trained by way of backpropagation (gradient-descent). (See [5] for general neural
network introduction and information). In general, multi-layered neural networks are said to
perform a non-linear function of the linearly weighted sum of inputs in a distributed manner and can
be very powerful.

Conventionally, each pixel in the input image (or dimension in the vector representation) is
represented by a neuron in the input layer, so the need for data reduction is again apparent in order
to avoid an excessive network size. For each class a neuron is required in the output layer (10 in the
case of numeric character classification) which indicate the predicted class of the input image. The
number of hidden layers and hidden units is problem specific and is not easy to know [6], although
in general only a single hidden layer is required. It can be seen that each hidden unit represents an
important feature of the input image [6] and that the output layer sums these features to decide on
the classification. In practice, the number of hidden units can be varied and the test dataset used to
detect the optimal network structure. Training is done with the training dataset which is used to
adjust the connection weights between neurons by way of standard methods, e.g. backpropagation
propagates the error between the predicted and actual classifications backwards through the network
making adjustments to the weights such that the error should decrease.

Multi-layered feed-forward neural networks have been shown to be very powerful not only
in character recognition, but also in a wide variety of image recognition tasks such as face
recognition. However, there are shortfalls which need to be overcome. If the input and hidden layers
are made necessarily large in order to correctly classify the training data, the network is likely to
ignore the general topology and features and instead process pixel-pixel comparisons and will thus
behave poorly with noise and testing data as the network will over-fit the weights. Use of separate
test data to calculate the hidden layer size and generalisation of the network is required.
Furthermore, the use of dimension reduction should reduce the image data to a feature
representation and thus avoid the use of direct pixel mappings for classification. Additionally, the
networks by default are not robust to variance in the image such as scale, rotation and translation,
necessitating image pre-processing to make all input images approximately equal in composition.

Figure 3
An example feed-forward neural network for classifying image data [4].

Overview

Discussed above are the necessary pre-recognition steps required to perform numerical digit
classification, along with two commonly used algorithms: one a simple linear model, the other a
more complex non-linear model. Both algorithms can provide good results but neither is flawless,
with both susceptible to the usual problems of noise and non-generalisation so care must be taken.
In industry, the best numeric character recognition systems have an error rate of less than 1 %, a
performance better than human ability [3] and they are also extremely fast. The commercial
importance of such system is clear. However, the field is far from complete in computer vision
research, with the new area of real-time cursive handwritten character recognition, often on limited
hardware, being a very active and important research area.

Bibliography

[1] Wikipedia reference, Optical character recognition,
http://en.wikipedia.org/wiki/Optical_character_recognition , downloaded 14.01.06.

[2] David Barber (2004). Learning From Data Lecture Notes, Dimensionality Reduction: Principal
Component Analysis. http://www.anc.ed.ac.uk/~amos/lfd/lfd0405/lectures/lfd_2004_dim_red.pdf
downloaded 14.01.06.

[3] David Barber (2004). Learning From Data Lecture Notes, Nearest Neighbour Classification.
http://www.anc.ed.ac.uk/~amos/lfd/lectures/lfd_2005_nearest_neighbour.pdf , downloaded
15.01.06.

[4] Shahzad Malik (2000). Hand-Printed Character Recognizer using Neural Network.
http://www.cs.toronto.edu/~smalik/downloads/report_407.pdf, downloaded 15.01.06.

[5] Wikipedia reference, Artificial neural network,
http://en.wikipedia.org/wiki/Artificial_neural_networks, downloaded 15.01.06.

[6] Rao, V., Rao, H. (1995). Neural Networks and Fuzzy Logic. MIS Press, New York.

