
Bayesian Methods of Parameter Estimation

Aciel Eshky
University of Edinburgh
School of Informatics

Introduction

In order to motivate the idea of parameter estimation we need to first understand
the notion of mathematical modeling.

What is the idea behind modeling real world phenomena? Mathemat-
ically modeling an aspect of the real world enables us to better understand it
and better explain it, and perhaps enables us to reproduce it, either on a large
scale, or on a simplified scale that characterizes only the critical parts of that
phenomenon [1].

How do we model these real life phenomena? These real life phenomena
are captured by means of distribution models, which are extracted or learned
directly from data gathered about them.

So, what do we mean by parameter estimation? Every distribution
model has a set of parameters that need to be estimated. These parameters
specify any constants appearing in the model and provide a mechanism for
efficient and accurate use of data [2].

Approaches to parameter estimation

Before discussing the Bayesian approach to parameter estimation it is important
to understand the classical frequentest approach.

The frequentest approach

The frequentest approach is the classical approach to parameter estimation. It
assumes that there is an unknown but objectively fixed parameter θ [3]. It
chooses the value of θ which maximizes the likelihood of observed data [4], in
other words, making the available data as likely as possible. A common example
is the maximum likelihood estimator (MLE).

The frequentest approach is statistically driven, and defines probability as
the frequency of successful trials over the number of total trials in an experiment.
For example, in a coin toss experiment, we toss the coin 100 times and it comes
out 25 times as heads and 75 times as tails. The probabilities are extracted
directly from the given data as: (P = heads) = 1/4 and (P = tails) = 3/4.
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Distribution models that use the frequentest approach to estimate their pa-
rameters are classified as generative models [5], which model the distribution
of entire available data, assumed to have been generated with a fixed θ.

The Bayesian approach

In contrast, the Bayesian approach allows probability to represent subjective
uncertainty or subjective belief [3]. It fixes the data and instead assumes possible
values for θ.

Taking the same coin toss example, the probabilities would represent our
subjective belief, rather than the number of successful trials over the total trials.
If we believe that heads and tails are equally likely, the probabilities would
become: (P = heads) = 1/2 and (P = tails) = 1/2.

Distribution models that use the Bayesian approach to estimate their pa-
rameters are classified as conditional models, also known as discriminative
models, which do not require us to model much of the data and are rather only
interested in how particular part of the data depends on the other parts [5].

The Bayesian paradigm

Basics of Bayesian inference

This description is attributed to the following reference [6]. Bayesian inference
grows out of the simple formula known as Bayes rule. Assume we have two
random variables A and B. A principle rule of probability theory known as
the chain rule allows us to specify the joint probability of A and B taking on
particular values a and b, P (a, b), as the product of the conditional probability
that A will take on value a given that B has taken on value b, P (a|b), and the
marginal probability that B takes on value b, P (b). Which gives us:

Joint probability = Conditional Probability x Marginal Probability

Thus we have:
P (a, b) = P (a|b)P (b)

There is nothing special about our choice to marginalize B rather than A, and
thus equally we have:

P (a, b) = P (b|a)P (a)
When combining the two we get:

P (a|b)P (b) = P (b|a)P (a)

rearranged as:

P (a|b) =
P (b|a)P (a)

P (b)
and can be equally written in a marginalized form as:

P (a|b) =
P (b|a)P (a)

ΣA
a′P (b|a′)P (a′)

This expression is Bayes Rule. Which indicates that we can compute the con-
ditional probability of a variable A given the variable B from the conditional
probability of B given A. This introduces the notion of prior and posterior
knowledge.
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Prior and posterior knowledge

A prior probability is the probability available to us beforehand, and before
making any additional observations. A posterior probability is the probability
obtained from the prior probability after making additional observation to the
prior knowledge available [6]. In our example, the prior probability would be
P (a) and the posterior probability would be P (a|b). The additional observation
was observing that B takes on value b.

Utilizing Bayes rule for parameter estimation

Bayes rule obtains its strength from the assumptions we make about the random
variables and the meaning of probability [7]. When dealing with parameter
estimation, θ could be a parameter needed to be estimated from some given
evidence or data d. The probability of data given the parameter is commonly
referred to as the likelihood. And so, we would be computing the probability
of a parameter given the likelihood of some data.

P (θ|d) =
P (d|θ)P (θ)

ΣΘ
θ′P (d|θ′)P (θ′)

Bayesian parameter estimation specify how we should update our beliefs in the
light of newly introduced evidence.

Summarizing the Bayesian approach

This summary is attributed to the following references [8, 4]. The Bayesian
approach to parameter estimation works as follows:

1. Formulate our knowledge about a situation

2. Gather data

3. Obtain posterior knowledge that updates our beliefs

How do we formulate our knowledge about a situation?

a. Define a distribution model which expresses qualitative aspects of our
knowledge about the situation. This model will have some unknown pa-
rameters, which will be dealt with as random variables [4].

b. Specify a prior probability distribution which expresses our subjective
beliefs and subjective uncertainty about the unknown parameters, before
seeing the data.

After gathering the data, how do we obtain posterior knowledge?

c. Compute posterior probability distribution which estimates the un-
known parameters using the rules of probability and given the observed
data, presenting us with updated beliefs.
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The problem of visual perception

To illustrate this Bayesian paradigm of parameter estimation, let us apply it to
a simple example concerning visual perception. The example is attributed to
the following reference [9].

Formulating the Problem

The perception problem is modeled using observed image data, denoted as d.
The observable scene properties, denoted as θ, constitute the parameters needed
to be estimated for this model. We can define probabilities as follows:

P (θ) represents the probability distribution of observable scene properties, which
are the parameters we need to estimate, or in other words, update in the
light of new data. This probability constitutes the prior probability.

P (d|θ) represents the probability distribution of the images given the observable
scene properties. This probability constitutes the likelihood.

P (d) represents the probability of the images, which are constants that can be
normalized over.

P (θ|d) represents the probability distribution of the observable scene properties
given the images. This probability constitute the posterior probability of
the estimated parameters.

By applying Bayes theorem we arrive at:

P (θ|d) =
P (d|θ)P (θ)

P (d)

And equally:

P (θ|d) =
P (d|θ)P (θ)

ΣΘ
θ′P (d|θ′)P (θ′)

The denominator can be consider as a normalizing constant:

P (θ|d) = k ∗ P (d|θ)P (θ)

An example

Consider the following problem. Given the silhouette of an object, we need to
infer what that object is.

The prior distribution of objects, P (Object) = P (θ), is:

Object Probability
Cube 0.3

Cylinder 0.2
Sphere 0.1
Prism 0.4
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Figure 1: Objects and Silhouette [9]

The likelihood of a silhouette given an object, P (Silhouette|Object) = P (d|θ),
is:

Cube Cylinder Sphere Prism
Square 1.0 0.6 0.0 0.4
Circle 0.0 0.4 1.0 0.0

Trapezoid 0.0 0.0 0.0 0.6

The normalization constant k is given as 1.85.

The posterior distribution of objects given the silhouettes,
P (Object|Silhouette) = P (θ|d) can then be computed. For example, given
θ = Square

P (Cube|Square) = k ∗ 0.2 ∗ 1.0 = 0.37

P (Cylinder|Square) = k ∗ 0.3 ∗ 0.6 = 0.333

P (Sphere|Square) = k ∗ 0.1 ∗ 0.0 = 0.0

P (Prism|Square) = k ∗ 0.4 ∗ 0.4 = 0.296

And thus we have updated our beliefs in the light of newly introduced data.
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