
Monte-Carlo methods for Computer

Vision

Alfredo Kalaitzis
School of Informatics

University of Edinburgh

May 22, 2009

1 Introduction

There are several ways that Monte Carlo Methods that have been applied to
computer vision problems. We give some examples from:

� sampling

� function integration

� rejection sampling

� particle filtering

� Markov Chain Monte Carlo

2 The sampling idea

In figure 1, suppose we are throwing darts to each of the Cartesian systems.
The probability of a dart falling anywhere in the red area is easy to compute
when we are dealing with analytical shapes such as a rectangle or a circle; but
how do we compute the probability of success in the third case?

One approach is the Riemann integration method by separating the whole
system into a thin grid and computing the ratio RedSquares

AllSquares , from which we get
an approximation of the red area.

A problem with this approach is that the computational cost increases
exponentially with the dimensionality of the area.

3 The Monte-Carlo principle

Estimating the probability of getting a dart in any red area is mathematically
equivalent to estimating the integral of that area. The Monte-Carlo way of
doing the above integration would be to throw an arbitrary number of darts
(samples) in the Cartesian system, and while assuming that we make no effort
of aiming into the red area1, we compute the ratio DartsInRedArea

AllDarts .
1i.e. the samples are Independently and Identically Distributed from a 2D uniform

distribution

1

Figure 1: (left) rectangle red area, (mid) red area as an ellipse, (right) a non-
analytic red area.

Figure 2: source. http : //www.cs.ubc.ca/ ∼ nando/papers/mlintro.pdf

4 The role of sampling in Computer Vision

We will be concerned with the case of integration. Many advanced computer
vision methods perform probabilistic inference, which is basically the iterative
application of the two fundamental rules of probability theory, the sum-rule and
the product-rule.

sumrule : P (A) =
∑

B

P (A, B) (1)

productrule : P (A,B) = P (A|B)P (B) = P (B|A)P (A) (2)

In typical inference problems these rules are combined with assumptions of
conditional independence between random variables, to infer the most probable
class of an object in an image, or the most probable position of an object
when tracking its position thought time. In typical real-world applications,
we dont get to pick one out of a discrete set of probable states but instead,

2

out of an infinite amount of probable state in a continuous state-space; hence
the estimation of integrals is one of the biggest issues in Bayesian
inference.

One way to deal with this is through sampling. In figure 1, as the number
of samples reaches infinity, our estimation converges to the true value of the red
area. Note that the computational cost of this approach does not depend on
the dimensionality of the area. This simplified version of MC integration is also
the most common application of the MC principle.

5 Monte Carlo integration

Suppose we wish to estimate the expectation (mean) of a function f(x) (e.g
f(x) = x, f(x) = x− µ (variance)),

µ̂f =
∫

f(x)P (x|D) (3)

and that we already know the posterior distribution P (x|D) (fig 3). We

Figure 3: Example of a posterior probability distribution

generate many samples xi|N1 from P (x|D) and we bin them to infinitesimal
intervals dx. So instead of P (x|D), we get to estimate its approximation,

P (dx|D) =
1
N

N∑

i=1

δxidx (4)

By substitution of (4) into (3) we have,

µf =
∫

f(x)
N∑

i=1

δxidx =
1
N

N∑

i=1

f(xi) (5)

which is intuitive too, as it says that we approximate the expectation of f(x)
at N randomly generated xi, according to P (x|D), as in figure 4. In fact, the
problem is that we dont know how to sample from P (x|D)2.

6 Rejection Samping [2]

In terms of application of all the methods we are going to describe from now on,
suppose that the distribution we want to approximate, represents the x positions

2This doesn’t mean that we can’t measure P (x|D) at a specific xi. A practical consequence
of the problem is that we don’t know how to make a random number generator that generates
samples xi which represent the distribution P (x|D).

3

Figure 4: Function value (blue dots) is proportional to the number of samples
(black dots) at that interval.

of multiple objects in a particular frame of a video. We wish to sample from an
unknown distribution P (x).

One approach is to sample x from a known distribution, x ∼ Q(x) which
is normally-distributed (Gaussian), and choose a scalar M . Also, we sample
u ∼ U(0,1) from a uniform distribution 0 to 1. If

uMQ(xi) > P (xi) (6)

then we reject xi as an invalid sample from P (x) (fig 5).

Figure 5: The proposal Q(x) covers appropriately the true distribution P (x).

The problem is now shifted to choosing an appropriate MQ(x). If it is too
large, we will waste too many samples. If it is too small, we will gather inap-
propriate samples. High dimensional distributions are tricky too cover because
most of their probability mass is concentrated on low density areas3. Also, out-
liers create heavy-tailed distributions, which are difficult to sample from. As a
result, we would have to raise M significantly, but that would cause to waste
many samples. Hence, in high dimensions and with lots of outliers, this method
is ineffective. Importance sampling is an alternative to rejection sampling, and
is used more frequently when dealing with a few extra dimensions, but is also
ineffective in high dimensions. MCMC methods (Metropolis, Hamiltonian) are
more suitable for large dimensionalities.

7 Particle Filtering [3][4][5][6]

Particle filtering is used to track the movement of distributions, which - as we
mentioned earlier - represent tracked positions. We start with samples from an
initial distribution (see fig 6, first layer of blue dots):

3i.e. they form a shell of low density around a small area of high density.

4

Figure 6: source. http://www.cs.ubc.ca/∼nando/papers/mlintro.pdf

We weight the samples (visualised by size of dot) with importance sampling.
Then we propagate them to the next state of the distribution and re-weight
them. As the distribution changes over time, we are able to track the distribu-
tion by moving the particles through the dynamics of the distribution change,
re-weighting with importance sampling, and then selecting the fittest by re-
sampling. Re-sampling is the process of taking the cumulative of the approx-
imated distribution so far and projecting onto it a uniformly random number
from 0 to 1. Since the approximated cumulative distribution has the shape
of a rising staircase, the random number is more likely to hit a specific step
corresponding to the most probable sample from P(x). Hence, only the fittest
samples survive.

In the case where the object moves very fast, so does the distribution; and we
still want to maintain the mode of the distribution at the object’s true location.
To avoid ending up with a lot of samples with very small weights (as in fig 7), we
keep only the fittest and re-weight them. As a result we get a new set of weights
and we are now able to track the distribution/position of the fast object.

Figure 7: source. http://www.cs.ubc.ca/∼nando/papers/mlintro.pdf

8 Markov Chain Monte Carlo [1][7]

We start with the inverse problem of MCMC: Suppose we have a Markov chain
of 3 discrete states x1,x2,x3 (see fig 8):

the transition matrix (or stochastic matrix) of this Markov chain is

T = P (xt|xt−1) =

0 1 0
0 0.1 0.9

0.6 0.4 0

 (7)

A property of a Markov chain is that the probability of having a specific state
depends only on the previous state and not on the whole series of states in

5

Figure 8: Example of a Markov chain as a Finite State Automaton with 3
discrete states. Labels on edges are transition probabilities.

the past. Our goal is to learn the prior of being in each node, or the equilib-
rium/stationary/invariant matrix. If the graph is aperiodic and irreducible then
for any vector of probabilities v:

vT T t → πT , as t →∞ (8)

In other words, if we multiply T to vT t times, we will always end up with πT

as t goes to infinity. πT is called the invariant or stationary distribution of the
Markov chain and it contains the prior probabilities of being in each state. In
the chain is reducible, then we might never be able to visit some nodes. If it is
periodic, it will have oscillations and we might never be able to converge towards
the invariant distribution. For information of what a irreducible and aperiodical
Markov chain is, see http : //en.wikipedia.org/wiki/Markov chain.

MCMC works by doing the inverse of what we have done so far: Now πT

is the distribution from which we want to generate samples, and we construct
a transition matrix T such that when multiplied to a vector, it gives samples
from πT . In the case of discrete states, (8) is be written as

N∑

i=1

πiTij = πi (9)

and in the case of continuous state-spaces, we have
∫

π(x)P (y|x)dx = π(x) (10)

where P (y|x) is the Markov chain kernel.

9 MCMC: the Metropolis-Hastings algorithm [8]

How do we construct a good matrix T? The algorithm that builds T goes as
follows in pseudo-code:

� for i = 0 to N-1:

� sample u ∼ U(0,1) //u is uniformly generated from 0 to 1

� x∗ ∼ Q(x∗|xi) // x∗ is generated from a proposal distribution Q(x∗|xi)

� if u < A(xi, x∗) = min(1, P (x∗)
P (xi)

Q(xi|x∗)
Q(x∗|xi)) //A is the acceptance function

which outputs 0 to 1

6

� xi+1 = x∗

� else

� xi+1 = xi

P (x∗)
P (xi) shows which x is better, but we have to normalise by the proposals

Q(xi|x∗)
Q(x∗|xi)). This normalisation also ensures that the detailed balance condition is
satisfied. The detailed balance says that

π(xt)P (xt+1|xt) = π(xt+1)P (xt|xt+1) ⇒
∫

π(xt)P (xt+1|xt) = π(xt+1) (11)

which looks like (10). The detailed balance condition basically shows that the
Markov chain is indeed aperiodical so far, hence now the kernel can be con-
structed in order to get samples from πT . As in particle filtering, the problem
is again shifted to choosing a good proposal distribution Q.

While choosing a Q one should be aware of the following dangers: if the
Markov chain starts on one mode of the distribution and Q does not allow
jumps to other modes, then the approximation will be that of one mode. If Q
is too broad, we will waste a lot of samples.

The kernel is built as follows:

K(x,B) =
{

Q(B|x)A(x,B), x /∈ B
1− ∫

Q(x′|x)A(x, x′), x ∈ B, x′ ∈ {X \B} (12)

where B is a set of states and x′ is any other state except the ones in B. It
says: if B is accepted, we move from x to B with probability Q(B|x) multiplied
by the acceptance of B. If B is rejected, we remain in x (which is in B) with
probability 1 minus the integral of all probabilities Q(x′|x) multiplied by the
acceptance of x′. In the case of discrete state-spaces, the kernel is replaced by
a matrix T and the integral is replaced by a sum.

References

[1] F.Dellaert, S.Seitz, S.Thrun, and C.Thorpe. Feature correspondence: A
Markov chain Monte Carlo approach. In Advances in Neural Information
Processing Systems 13, pages 852-858, 2000.

[2] Robert, C.P. and Casella, G. ”Monte Carlo Statistical Methods” (second
edition). New York: Springer-Verlag, 2004.

[3] Ristic, B.; Arulampalam, S.; Gordon, N. (2004). Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Artech House.

[4] Doucet, A.; Johansen, A.M.; (December 2008). ”A tutorial on particle fil-
tering and smoothing: fifteen years later”. Technical report, Department of
Statistics, University of British Columbia. http://www.cs.ubc.ca/

[5] Doucet, A.; Godsill, S.; Andrieu, C.; (2000). ”On Sequential Monte Carlo
Methods for Bayesian Filtering”. Statistics and Computing 10 (3): 197-208.
http://www.springerlink.com/content/q6452k2x37357l3r/.

7

[6] Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T.; (2002). ”A tuto-
rial on particle filters for online nonlinear/non-Gaussian Bayesian tracking”.
IEEE Transactions on Signal Processing 50 (2): 174188

[7] Christophe Andrieu et al, ”An Introduction to MCMC for Machine Learn-
ing”, 2003

[8] Siddhartha Chib and Edward Greenberg: ”Understanding the Metropol-
isHastings Algorithm”. American Statistician, 49(4), 327335, 1995

Online :
http : //en.wikipedia.org/wiki/Sampling(statistics)
http : //phys.ubbcluj.ro/ zneda/edu/mc/mcshort.pdf
http : //www.cs.ubc.ca/ nando/papers/mlintro.pdf
http : //homepages.inf.ed.ac.uk/rbf/CV online/LOCAL COPIES/SENEGAS/node2.html
http : //homepages.inf.ed.ac.uk/rbf/CV online/LOCAL COPIES/SENEGAS/node4.html

Prepared in LATEX2ε by Alfredo Kalaitzis

8

