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1 Introduction

Many applications of signal processing entail detecting, extracting and classifying spe-
cific elements from high-dimensional data. These may be particular sounds from acoustical
signals, or shapes from visual scenes, and may most certainly present features that distin-
guish them from the surrounding (sush as a color or a frequency). A search strategy that
concentrates on transients would, under these circumstances, enable to easily separate fea-
tures and underline edges. This is, as a matter of fact, the key idea underlying the wavelet
transform [6].

Limitations of classical tools: Classical tools for signal processing such as the Fourier
Transform (FT) have interesting properties for emphasising frequential features. However,
because of the way they are defined, they are unable to distinguish signals that are stationary
from others which vary over time. That is due to the fact that the FT correlates signals
with sinusoidal waves (eiωt) which have non-compact support and cover the whole real line.
The transform thus yields a global ‘mix’ of information that makes is difficult to account
for local frequential properties.

Figures 1 and 2 illustrate this limitation. The Fourier transforms of two signals with identical
frequency components are compared. The first one is stationary: f = sin(2πf1 ·t)+sin(2πf2 ·
t) for t ∈ [0, 5], whereas the second is time-varying: g[0,5] = sin(2πf1 · t) and g[5,10] =
sin(2πf2 · t). It may be noted that the resulting transforms are identical, and that it is thus
impossible at the sight of the spectrum to determine what signal was at its origin.
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Figure 1: Fourier Transform of a stationary sig-
nal f = sin(2πf1 · t) + sin(2πf2 · t) for t ∈ [0, 5].
Two peaks at f1 and f2 are clearly visible in the
frequency domain.
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Figure 2: Fourier Transform of a non-stationary
signal g defined as: g[0,5] = sin(2πf1 · t) and
g[5,10] = sin(2πf2 · t). The transform is identical
to that of the stationary signal.

What makes Wavelets different? The wavelet transform has been specifically con-
ceived for evaluating time-varying frequency information, and it is especially suitable for
highlighting time-frequency properties in that it decomposes functions over test functions
ψs,u that have compact support and minimal spread in the time-frequency domain. Figure 3
illustrates the wavelet transform for the aforementioned signals, and emphasizes its utility
for detecting frequential transients.

This property of the WT may also be applied to 2D functions – images – in order to detect
edges and contrasts. The example in Figure 4 shows the possibility to point out contours,
and it confirms its applicability for shape tracking or face recognition.

• In the remainder of this review, I will thus present the foundations of Wavelet Networks
and their applications in a variety of domains. Section 2 starts by clearly defining the
Wavelet transform and the neural networks that are derived from them. Section 3 then
presents an overview of different applications, both for engineering and computer vision.

Figure 3: Wavelet Transform of the previous signals:
Non-stationary (top) ans stationary (bottom).
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Figure 4: 2D Wavelet Transform of a picture
with 1 coefficient.
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2 Formal Description

2.1 The wavelet transform, a tool for decomposition

The Wavelet transform is based on the same principles as the Fourier transform, but
relies on a finite-support test function – the wavelet – which acts as a localised filter of the
original signal, making it possible to iteratively analyse windowed parts of the signal and
extract space-dependent frequential information.

Each wavelet is derived from a zero-mean ‘mother’ function ψ (Fig 5) through two
linear transformations: (1) Dilatation by a scale parameter ‘s’ and (2) translation by ‘u’.
These parameters determine the width of the window and hence define the resolution of the
transform, as illustrated in Figure 6:

ψs,u(x) =
1√
s
· ψ

(
x− u

s

)

The wavelet transform of a function f(x) – for a given resolution (s, u) – is then given as:

WTs,u{f(x)} =
∫ +∞

−∞
f(x) · 1√

s
ψT

(
x− u

s

)
dx

which, in the Hilbert space L2(R), corresponds to the inner product < f, ψu,s >, i.e. the
projection of the function in the direction of vector ψu,s.

As a matter of fact, the set {ψu,s}u,s∈R represents a basis of L2(R) over which any given
signal with finite energy may be decomposed into its different frequency bands:

f̃(x) =
∑

∀u,s

< f, ψu,s > ψu,s(x) (1)

For a finite number of components N , the function f̃(x) is an approximation of the original
function in the space spanned by the N vectors {ψs,u(x)}. Interestingly, it may possible to
ensure that the approximation is as close as desired to the original function by selecting the
appropriate size for the subspace [6], i.e.

∀ε , ∃ N so that: ‖ f(x)−
N∑

n=1

< f, ψn > ψn(x) ‖< ε

Figure 5: Example of Morlet wavelet mother
function.

Figure 6: Waveform support in time (‘win-
dowing’) and corresponding frequential resolu-
tion (Extracted from S. Mallat 1999 [6])
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This property automatically leads to the idea of filter banks. These combine parallel de-
compositions over different resized wavelets in an attempt to approximate non-linear signals
while ensuring that certain desired components are maintained.

Figure 7: Example of filter bank with N wavelets applied to function decomposition (Extracted from
Wikipedia [1])

Wavelet Networks derive logically from this structure and go beyond, offering the pos-
sibility to be applied for learning or classification. They present interesting characteristics
that will be detailed in the following section and which make them especially relevant for
applications in computer vision – such as face recognition or tracking – biology etc.

2.2 Wavelet Networks

Wavelet Networks attempt to combine the properties of the Wavelet decomposition pre-
viously described, along with the characteristics of neural networks [10]. Their structure
relies on the aforementioned principles –underlying non-linear function approximation– and
is given by the equation

f̃(x) =
∑

i

wiψni(x) (2)

in which the weights wi represent the coefficients of the network (Fig 8). These are to
be tuned as the network learns, in order to give preference to relevant components among
the set of N wavelet functions Ψ = (ψn1 , ψn2 ...ψnN

), whereas non-relevant ones are to be
penalised.
In this notation, the vector ni for each wavelet gathers its corresponding parameters, i.e.
n = (s, u) in the case of the 1D decomposition of functions in L2(R), or n = (sx, sy, ux, uy, θ)1

for 2D images in L2(R2).

Definition: At the sight of equation (2), the wavelet network is completely defined by the
tuple (Ψ,w). Its optimised components may be obtained by calculating the weights wi and
wavelet parameters n that minimise the least-square error function for f(x), i.e. the ones
that make the model fit better to the original function f :

min
w,n

‖ f(x)−
N∑

i=1

wiψni(x) ‖2

This calculation hence implies finding the most suitable N wavelets on which to project,
along with the weight that each component ought to be given –how much it ought to con-
tribute to the overall description of f(x)– in order to maximise the approximation f̃(x).
Such procedure is to be carried out during the learning phase so as to adapt the network to
the set of training data points {Tn}.

Let us remind that minimising the least-square error function in L2(R2) corresponds to
finding the function f̃(x) that reduces the euclidean distance to each point in the training
data, i.e. the one that minimises the lost energy that is due to the approximation.

1θ represents the orientation in the 2D plane
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Figure 8: Wavelet Network structure (similar to
the perceptron). Example with multiple inputs
and multiple outputs (Extracted from Chen 2006
[2])

Figure 9: (Left) Initial distribution of the
wavelets (4×4) and (Right) their positions after
optimisation (Extracted from V. Kruger 1999 [5])

Weight Distribution: It may be noted from equations (1) and (2) that there is a tight
link between the weights of the network wi and the wavelet decomposition < f,ψni

>. As a
matter of fact, the values for wi are automatically provided by the wavelet transform [10].

As a result, the final distribution of weights (after optimisation) inherits the suitability of
wavelets for ‘feature detection’. The wi are thus automatically tuned so as to prioritize
projections that highlight transients, whereas wavelets encoding less relevant parts of
images are penalised. The result is a network which is directly related to the underlying
image structure [5], and in which all parameters (wi,n) are jointly fitted from data.

This characteristic is clearly illustrated in Fig 9 (right image) where the 16 wavelets have
been distributed at locations where the biggest transients may be encountered, such as for
instance above the eyebrows, at the limit of the hair or around the mouth.

Algorithm: The initialisation of the network may consist of an arbitrarily distributed set
of wavelets, i.e. homogeneously distributed test functions with random orientations θ and
constant dilations and scaling factors. Nevertheless, since wavelets are rapidly-vanishing
functions, the parameters may need to be constrained in order to prevent degenerated
wavelet shapes [3].

As for the updating requirements, backpropagation algorithms are commonly employed
to tune the parameters. This technique is broadly used for teaching feed-forward neural
networks, and is thus perfectly adapted to our wavelet-based case. In addition, it presents
many advantages such such as quick convergence time. Likewise, it may be possible to make
use of optimisation algorithms such as the Levenberg-Marquardt method, which is especially
suitable for least-square problems.

3 Applications

The properties that have been emphasised until now make Wavelet Networks especially
interesting for a wide range of applications in engineering, computer science or biology [9].
These may range from classification, to feature extraction or approximation of complex non-
linear functions. Some relevant examples will be further discussed in the following lines, in
order to give a flavour of the possibilities offered by this technique.

3.1 Computer Vision

Many probabilistic approaches have been developed for computer vision, such as neural
networks, PCA or Eigenfaces. These methods tend to learn the variance of grey-value pixels
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over a set of training data, and then make use of that pixel-basis knowledge to classify new
images. This is performed independently of the object itself.

The interest of Wavelet Networks relies on their ability to be directly related to
the underlying structure of the image [5]. The wavelets functions – on which the
model is built – are ‘natural’ feature detectors [7] and are independent, for instance, of
illumination changes. Figure 10 points out how wavelets do, for instance, automatically
adopt the orientation θ of the image. Moreover, they provide a resolution that may be tuned
in order to concentrate on given regions, making them specially suitable for surveillance or
tracking applications.

An example for face tracking is described by Krueger et.al. [5] in which 16 sets (4×4)
of 4 Gabor wavelets (with corresponding orientations 0, π/4, π/2 and 3π/4) are distributed
within the region of interest (the face). The resulting projections are then calculated using a
neural network and the solutions of each filter response are obtained. In order to be able to
track the face, an update is performed for each frame, which implies (1) a re-parametrisation
of the model (so as to follow the movement of the target) and (2) an optimisation of the
previous weights to account for changes in the image. This leads to the tracking shown in
figure 11.

Figure 10: Different wavelets sharing the ori-
entation of the feature in the image (left). Best
ones automatically selected (right) (extracted
from Krueger 2002 [5]) Figure 11: Examples of Face tracking (ex-

tracted from Krueger 2002 [5])

3.2 Engineering

Robot control: Robot motion is described by complex non-linear dynamics equations
which include time-dependent parameters and system uncertainties, as observed in the dif-
ferential description:

u = M(q)q̈ + C(q, q̇)q̇ + g(q)

In this framework, approximations through non-linear networks turn out to be very useful
for learning control patterns [4], solving inverse kinematics problems [2] and synthesising
correct behavior. This purpose has been previously studied and solved by means of neural
networks based on radial basis functions (RBF), i.e. functions that depend only on the
distance to a reference point (or centre) ci:

f̃(x) =
N∑

i=1

wiφ(‖ x− ci ‖)

However, for a given function, the RBF network may not be unique, nor particularly efficient.
The model developed by Katic et.al. [4], for example, replaces this activation function by a
wavelet-based network which then plays the role of a robust controller, helps compensate
uncertainties when the system is in contact with the environment, and yields much more
computational efficient results. Promising results have been achieved in this context for
controlling manipulator robots such as the one in figure 12.
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Product quality monitorisation: Thomas et.al. [8] extends the concept of wavelet
networks to cope with the requirements of production lines. This purpose entails monitoring
large number of non-stationary signals which are obtained form sensors, and performing
feature extraction and classification so as to come up with a diagnosis system.

In this environment, the wavelet network concentrates on transients and is used to extract
specific features from the signals and to recognise the state of the system. This model makes
use of different wavelet networks, one for each feature group, as illustrated in Figure 13,
and includes a geometry-based criterion for model selection. Successful results have been
achieved for engine knock detection. This asserts, from a more general perspective, the
interest of wavelet networks for dealing with industrial problems which involve noisy sensors
and non-stationary readings.

Figure 12: Manipulator PUMA560 for which
Inverse kinematics may be calculated through
wavelet networks (Extracted from Chen 2006 [2])

Figure 13: Feature extraction phase with sev-
eral wavelet networks (Extracted from Thomas
1996 [8])

4 Conclusion

This review has presented the Wavelet transform and its use within feed-forward neural
networks. The mathematical foundations have emphasized important properties regarding
feature detection and non-lineal function approximation, which have been shown to be of
great interest for applications in engineering, robotics and computer vision. Examples of
face tracking or dynamic control have been highlighted as proof of what this technique may
lead to in the future.

Still, as stated in [6], ‘the world of transients is considerably larger and more complex
than the garden of stationary signals’, and this review does certainly not attempt to give a
full overview of all the techniques currently available in this field. It hopes, nevertheless, to
have provided a clear background of the difference with other approaches, and to motivate
the reader to continue deepening in the possibilities offered by this domain.
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