
Video Inpainting

Sean Moran (sean.moran@cantab.net)
April, 2009

1 Introduction

Video Inpainting refers to a field of Computer Vision that aims to remove objects or
restore missing or tainted regions present in a video sequence by utilizing spatial and
temporal information from neighbouring scenes. The overriding objective is to generate
an inpainted area that is merged seamlessly into the video so that visual coherence is
maintained throughout and no distortion in the affected area is observable to the human
eye when the video is played as a sequence.

It is important at this stage to distinguish video and image inpainting from the related
field of “texture synthesis”. The main difference between these approaches is in the size
and characteristics of the region to be corrected. For texture synthesis the region can
be much larger with the main focus being the filling in of two-dimensional repeating
patterns that have some associated stochasticity i.e. textures. In contrast, inpainting
algorithms concentrate on the filling in of much smaller regions that are characterised
by linear “structures” such as lines and object contours. There has been some recent
work by Criminisi et al. [1] to bridge this gap and to provide a single algorithm to
handle both of these cases given both the presence of textures and structures in images.

Despite still being a relatively young field compared to the related area of image
inpainting, some rather encouraging results have already been obtained by the research
community. Figures 1 and 2 demonstrate a video inpainting algorithm being employed
to edit two different video sequences. In Figure 1 video inpainting techniques are used
to completely erase a person in a typical office surveillance scene. In Figure 2 we use
a video inpainting algorithm to repair a damaged video.

Figure 1: In this surveillance scene, a video inpainting algorithm is applied to com-
pletely remove the person from the video. On the top left we see a
frame from the original untouched video containing the person. On the
right, the region containing the person is isolated from the video, lead-
ing to removal of the person on the bottom left image using a video in-
painting algorithm. On the bottom right a hidden watermark of the per-
son is embedded back into the image (note this last step is not commonly
performed as part of a typical video inpainting algorithm). Image source:
http://www.vis.uky.edu/˜jameszhao/video inpainting.html

Figure 2: Here we are employing a video inpainting algorithm to repair a damaged
video. The damage consists of the large black region in the middle of the
video sequence, possibly caused bitloss due to transmission across an unreli-
able network. Image (a) depicts the original video sequence - notice here how
the damaged region completely occludes the bottom half of the person and the
associated background. Image (b) shows the first step of the inpainting algo-
rithm which fills in the missing portion of the person. Image (c) completes
the process by filling in the missing background, with Image (d) providing a
zoomed in view of the key frame with the person walking through the damaged
region. Notice the excellent restoration of the video. Image source: [5]

Interest in the video inpainting field has increased significantly amongst the research
community over the past several years due to the varied and important applications of
an automatic means of video inpainting. Some of the key applications include:

• Undesired object removal: Static or dynamic objects may not be wanted
in a film, perhaps due to a change of heart by the director or simply that it
was infeasible or unavoidable to exclude the objects during the initial recording
(for example, a jet aeroplane flying past during the recording of an 18th century
drama.)

• Visual story modification: Video inpainting can also be extended to change
the behaviour of entities within a video. This may be required, for example, to
censor an obscene gesture or action that is not deemed appropriate for the target
audience, but for which it would be infeasible or expensive to re-shoot the scene.

• Video restoration: Videos can be damaged by scratches or dust spots or frames
could simply be missing or corrupt. It is also possible that during transmission
over unreliable networks, information pertaining to significant portions of video
frames may be lost in transit. To view the video again in its former glory it is
necessary to repair these damaged scenes in a manner that is visually coherent
to the viewer.

These processes are frequently performed by restoration professionals in a manual
fashion, which is not only painstaking and slow but also rather expensive. Therefore any
means of automation would certainly be of benefit to both commercial organizations
(such as broadcasters and film studios) and private individuals that wish to edit and
maintain the quality of their video collection.

2 Why not just use methods from the field of Image

Inpainting?

It is important to clarify the reason as to why it is simply not possible to extend methods
put forward for image inpainting (that is, the completion of damaged regions in single
images using information from the surrounding areas) to the related field of video
inpainting. After all a video can just be thought of as a sequence of still images. The
key point to note is that image inpainting techniques only consider spatial information,
and completely neglect the significant temporal component present in video sequences.
Only considering the spatial component leads to quite severe image artefacts being
produced in the resulting inpainted video. This is because the essential assumption of
image inpainting, that edges should be interpolated in some smooth way, is not valid
when we consider the dimension of time. Non-smooth temporal changes can arise, for
instance, due to a particular pixel containing background in one frame, and foreground
in a following frame. It may well be the case that when the inpainted video frames are

taken separately no artefacts are visible, but only when played in a sequence do the
artefacts (for example, a phantom object drifting steadily through the video) manifest
themselves to the human eye.

3 Previous Work

Video inpainting is a particularly challenging problem. Difficulties arise due to the
possibilities of camera motion, the requirement to handle both static and dynamic
regions, as well as the pose and scale variation, lighting and shadows, background
clutter, deformation and occlusions that are commonly present in a video. The problem
is usually made tractable by imposing some limiting constraints and solving for a less
complex subclass of the problem. Common constraints include a static camera, the
handling of small ranges of motions only, and a limited size of region to be repaired
(commonly this is quite small).

The literature is replete with a varied array of video inpainting proposals each ad-
vocating different approaches to the problem, some of which we will briefly mention
hereunder. Bertalmio et al. [1] investigated the extent to which ideas from computa-
tional fluid dynamics could be applied to image and video inpainting. Here the authors
only consider spatial information in a video and perform the inpainting on a frame by
frame basis leading to limited applicability of the algorithm.

In contrast, Wexler et al. [2] take account of the spatial and temporal dimensions in
their space-time video completion approach which enables the model to handle video
sequences of complex dynamic scenes. Here the authors attempt to solve the inpainting
problem by sampling a set of spatial-temporal patches (a set of pixels at frame t) from
other frames to fill in the missing data. Global consistency is enforced for all patches
surrounding the missing data so as to ensure coherence of all surrounding space time
patches. This avoids artefacts such as multiple recovery of the same background object
and the production of inconsistent object trajectories. This method provides decent
results, however it suffers from a high computational load and requires a long video
sequence of similar scenes to increase the probability of correct matches.

Patwardhan et al. [5] suggest a rather simpler method for inpainting stationary
background and moving foreground in videos. To inpaint the stationary background a
relatively simple spatio-temporal priority scheme is employed where undamaged pixels
are copied from frames temporally close to the damaged frame, followed by a spatial
filling in step which replaces the damaged region with a best matching patch so as to
maintain a consistent background throughout the sequence.

In their paper [4], Jia et al. propose an inpainting method that aims to tackle the
challenging issue of inpainting under the presence of severe occlusion. The authors seg-
ment a video into a moving object layer and a static background layer. The techniques
of layer segmentation and homography blending are used to recover static background
pixels. Moving foreground pixels are repaired by sampling motion data followed by the
application of 3D tensor voting so as to maintain temporal coherence and motion peri-

odicity. Missing dynamic foreground pixels are then inferred by spatial and temporal
alignment of the sampled motion data. This work is significantly more complex than
other proposals in the literature, but this added complexity enables the algorithm to
handle a range of camera motions, including zoom-in, zoom-out, rotation about a fixed
point, and panning.

It is quite common for most of the approaches in the literature to require the user
to specify the damaged region to be repaired. However in [6], the authors manually
show how it is possible to identify regions to be repaired in an automatic fashion using
motion cues. This is certainly an important step for the widespread adoption of video
inpainting technologies amongst the commercial and private communities.

In this article we will discuss the video inpainting proposal put forward by Patward-
han et al. [5] which describes a simple, fundamental approach to the problem making it
ideal for the purposes of introducing and illustrating the core concepts in the field. The
reader is encouraged to consult the further reading references at the end of this article
for pointers to other papers describing the alternative methods of video inpainting.

4 Video Inpainting of Occluding and Occluded Objects

In their paper, “Video Inpainting of Occluding and Occluded Objects”, Patwardhan et
al. suggest a basic technique to achieve the following two inpainting tasks:

1. Removal of non-stationary objects that occlude stationary background. The al-
gorithm ensures that temporal consistency is maintained after the removal of the
object.

2. Filling in moving objects that may be partially occluded. This is performed whilst
ensuring that the motion is globally consistent throughout the video.

To achieve these goals the authors build upon the previous 2-D texture synthesis
work of [3] and [7]. To get an intuitive understanding of the video inpainting algorithm
proposed by Patwardhan et al. it is instructive to take a brief detour to examine the
2-D texture synthesis work of Criminisi et al. [7], given that the video inpainting paper
heavily relies on the suggested techniques in this paper. For this we will shift the
analysis briefly to that of inpainting single images (rather than video inpainting).

4.1 Region Filling and Object Removal by Exemplar-Based Image
Inpainting

The 2-D texture synthesis algorithm proceeds by a user manually selecting a region Ω
in the image that is to be removed and filled. The source region or Φ is defined as the
entire image minus the target region that is to be filled or Φ = I − Ω where I denotes
the image of interest. Figure 3 illustrates the main parameters used in the algorithm.

Figure 3: Ψp denotes the patch to be filled. np is the normal to the region contour δΩ of
the target region Ω and ∆I⊥p is the isophote at point p. I denotes the entire
image. Image source: [7]

As the diagram illustrates, the target region to be inpainted is denoted by Ω with its
contour given by δΩ. This contour moves in an inward direction during the execution
of the texture synthesis algorithm. A best first filling strategy is employed to fill the
desired region based on calculated patch priorities. Two key ideas guide the calculation
of these priorities:

1. Patches on the continuation of strong edges are preferred.

2. As well as those patches that are surrounded by high-confidence (in terms of their
value) pixels.

Referring to Figure 3, given the patch Ψp, the priority P (p) of this patch is defined
as:

P (p) = C(p)D(p) (1)

Where in this equation, C(p) is the so-called confidence term and D(p) is the data
term. Intuitively, the confidence term attempts to represent the “reliability” of the
information surrounding the pixel p. Patches are deemed reliable if one or more of the
following criterion are met:

1. More pixels are already filled in within the relevant patch.

2. Pixels in the patch were filled in early on in the execution of the algorithm.

3. The patch contains pixels that were not initially part of the target region.

In contrast, the data term attempts to give priority to the filling in of linear structures
(e.g. people as opposed to textures) first, and this is quantified by measuring the
strength of the isophotes (contours of equal luminance in an image) arriving at the
contour δΩ. Mathematically, these terms are defined as follows:

C(p) =
Σq∈Ψp∩(I−Ω)C(q)

|Ψp|
(2)

D(p) =
|∇I⊥p .np|

α
(3)

Here |Ψp| is the area of Ψp, α is a normalization constant, np is a unit vector
orthogonal to the boundary δΩ at point p. A patch is associated with each point on
the boundary.

Given these equations, the algorithm proceeds to propagate the data from a source
patch to a target patch, where the target patch is that patch having the highest cal-
culated priority p using Equation 1. The source patch is found by applying a distance
measure (specifically the sum of squared distances measure operating on CIELab pixel
values) to ascertain the similarity between patches from the source region and the tar-
get patch. The patch in the source region having the most “similarity” to a patch

in the target region is the patch selected for copying to the target patch. Once the
copying has been performed, the confidence values of all those pixels in the intersection
of the target region and the region enclosed by the patch are then set to the confidence
value of the highest priority pixel. The algorithm then proceeds in this manner until
the desired region is inpainted. Figure 4 illustrates the operation of the inpainting
algorithm on an example image.

Having now provided an overview of the 2-D texture synthesis algorithm of Criminisi
et al. we are in a position to continue our discussion of the salient features of the video
inpainting algorithm of Patwardham et al.

4.2 Video Inpainting of Stationary Background

We will firstly consider how the authors propose to inpaint stationary background in a
video. Using the Equation 1, the proposed algorithm firstly assigns confidence values to
every pixel in every frame of the video, with a value of 0 given to the moving foreground
and damaged pixels (and 1 to the remaining pixels).

Figure 4: Image (a) shows the original unedited image. (b) depicts the target region
in white that is to be inpainted. (c) and (d) show different stages of the
inpainting process with the final result being displayed in image (e). Image
(f) shows a competing inpainting algorithm which performs less well due to the
blurring and lack of consideration given to texture synthesis. Image source:
[7]

In contrast to the data term (Equation 3) proposed by Criminisi et al., the authors
of this paper use a modified data term specifically designed to measure the abundance
of temporal information at location p. This was defined as follows:

D(p) =

∑
p∈δΩ,t=−δn...δn

Mt(p)

β
(4)

Where, in this equation Mt is set to zero if p is damaged or moving otherwise it
is set to the value of 1. The parameter t measures the relative position of any frame
from the current frame under consideration, β is a normalizing constant and n is the
number of previous and next frames to be considered in the video.

Equation 1 is used to calculate the priority of the pixel p as before, with the resultant
priority denoting the frame and pixel that will be filled in first with background infor-
mation. Those patches within the closest temporal locality (i.e. frame) of the current
frame with the highest confidence are copied to the location p. This process is repeated
until D(p) = 0, which indicates that no more temporal information is available to copy.

At this stage a hole will be found at the same location in all of the video frames. A
spatial filling in of the holes then proceeds according to Equation 3 - a highest priority
location is found along with its best matching patch, and this patch is copied to replace
the hole in all of the frames thereby ensuring a consistent background throughout the
sequence. Figure 5 demonstrates the process of filling in the static background on an
example video.

Figure 5: This diagram illustrates the operation of the inpainting algorithm on inpaint-
ing a static background. Image source: [5]

4.3 Video Inpainting of Moving Foreground

Figure 6 depicts the process adopted to fill in a moving object that is partially occluded
by a stationary or moving second object. The algorithm proceeds (for the current
frame) by firstly identifying the highest priority location for filling in the moving object.
This priority is calculated again using Equation 1 but with an amended data term,
defined as:

D(p) =
|(∇M⊥

c)p.np|
α

(5)

In this equation, Mc denotes a so-called motion confidence image which is zero if
a pixel p belongs to the static background and 1 if the pixel belongs to the moving
foreground. A sum of squared distances (SSD) metric is then used to find a best
matching patch from another frame in the video. The SSD is computed for both the
patch to be filled and on candidate replacement patches and consists of a 5 vector
containing the RGB values and the horizontal and vertical velocities of the relevant
patches. The moving part of the best matching patch is then copied to the current
frame and the confidence values of the remaining pixels are updated as in Equation 2.
Having performed this step the priority of non-moving pixels in the copied patch are
set to zero (see Figure 6, image (c)). The algorithm iterates in this manner until all
the pixels to be filled in have zero priority, at which point the object is deemed to have
been inpainted.

Figure 6: This diagram illustrates the operation of the inpainting algorithm on inpaint-
ing a moving object in the foreground. Image source: [5]

5 Discussion

This article has discussed one particular example of video inpainting, the paper by Pat-
wardhan et al. [5], which proposes a relatively simply inpainting algorithm that builds
upon the seminal 2-D texture synthesis work of Criminisi et al. [7]. This algorithm
produced reasonably good results that were comparable to existing methods proposed
in the literature. However this performance was traded off against the imposition of
rather strong limiting constraints on the imaging conditions, in this case the require-
ment for a static camera. Clearly, in practice, many videos will have a camera that
moves to some extent and so it is apparent from this short article that much work
still needs to be performed in the field to realise the ultimate goal of a fully robust
and reliable algorithm that can operate under a myriad of difficult imaging conditions,
including camera motion and other conditions such as severe occlusion and cluttered
background.

6 Further Reading

• [1] M. Bertalmio, A. L. Bertozzi, and G. Sapiro. “Navier-stokes, fluid dynamics,
and image and video inpainting”, Proc. IEEE Computer Vision and Pattern
Recognition (CVPR), Vol. I, pp. 355-363, 2001.

• [2] Y. Wexler, E. Shechtman, and M. Irani. “Space-time video completion”,
Proceedings. 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Vol. I, pp. 120-127, 2004.

• [3] A. Efros and T. Leung. “Texture synthesis by non-parametric sampling”,
IEEE International Conference on Computer Vision, Corfu, Greece, pp. 1033-
1038, 1999.

• [4] J. Jia, T. Wu, Y. Tai, and C. Tang. “Video repairing: Inference of foreground
and background under severe occlusion”, Proceedings. 2004 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, Vol. I, pp. 364-371,
2004.

• [5] K.A. Patwardhan, G. Sapiro, and M. Bertalmio. “Video inpainting of occlud-
ing and occluded objects”, in Proc. ICIP 2005., Vol. II, pp. 69-72.

• [6] C. Rasmussen and T. Korah. “Spatiotemporal Inpainting for Recovering Tex-
ture Maps of Occluded Building Facades”, IEEE Transactions on Image Process-
ing, 16(9), pp. 2262-2271, 2007.

• [7] A. Criminisi, P. Perez, and K. Toyama. “Region Filling and Object Removal
by Exemplar-Based Image Painting”, IEEE Transactions on Image Processing,
13(9), pp. 1200-1212, 2004.

7 Useful URLs

• Image and Video Inpainting:

– http://mountains.ece.umn.edu/˜guille/inpainting.htm

• Efficient Video Inpainting Based on Object Tracking and Interpolation:

– http://www.vis.uky.edu/˜jameszhao/video inpainting.html

• Video Inpainting of occluding and occluded objects:

– http://www.tc.umn.edu/˜patw0007/icip2005

