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1 Motivation

It is often necessary to reduce the dimensionality of a dataset, in order to
make analysis computationally tractable, or to facilitate visualisation. For
the purposes of computer vision, we are most often interested in reducing
the dimensionality of a large set of real-valued vectors (representing points
in some high-dimensional space), and in the course of such reduction, it
is useful to preserve structure as much as possible — that is, the geometric
relations between the original data points should be left intact to the greatest
extent feasible.

The simplest technique for dimensionality reduction is a straightforward lin-
ear projection, for example onto the principal components of the data (as in
PCA — principal component analysis). While this maximises the amount of
the original variance present in the transformed dataset, it will not (in gen-
eral) preserve ‘complex’ structures [1] — an example of such a structure being
a regular pattern over a curved manifold embedded in the high-dimensional
space, see Figure 1 for an example. Non-linear projections may therefore be
desirable when analysing such data.

This leaves the question of what non-linear transformation is optimal for
some given dataset. While PCA simply maximises variance, we now want
instead to maximise some other measure, that represents the degree to which
complex structure is preserved by the transformation. Various such measures
exist, and one of these defines the so-called Sammon Mapping, named after
John Sammon, Jr, who initially proposed it in [2].

More specifically, the measure used by the Sammon mapping is designed to
minimise the differences between corresponding inter-point distances in the
two spaces — a transformation is regarded as preferable if it conserves (to the
greatest extent possible) the distance between each pair of points. In addi-
tion, it attempts to ensure that the mapping does not affect the topology —
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(a) An example three-dimensional dataset, consisting of
eight sinusoids on the surface of a cylinder — thus the
entire dataset lies on a 2-manifold, and we should be able
to obtain a two-dimensional projection which preserves
the structural details
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(b) Result of applying PCA (a linear projection) to the
dataset in (a) — note that the individual sinusoids in-
tersect, thus the topology of the original has not been
preserved
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(c) Result of applying the Sammon mapping to the dataset
in (a) — this yields a somewhat different result to PCA;
there are fewer intersections between sinusoids, though still
some (indicating that the topology is being preserved some-
what better — though far from perfectly — by this map-
ping)
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(d) An idealised non-linear projection of the data, with
the cylinder ‘unrolled’, reveals the true structure most
clearly. However, the Sammon mapping is unlikely to
achieve this particular form, as the topology is not pre-
served along the cut corresponding to the top and bot-
tom edges of this plot

Figure 1: Various projections of a three-dimensional dataset, where all the
points lie on a cylindrical surface
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(a) Projection by PCA does not preserve the structure
of the dataset — it is unclear that it consists of three
circles

(b) The Sammon mapping preserves the topological
structure — while the circles become distorted, there
are still three closed loops meeting at a single point

Figure 2: PCA and Sammon projections of a six-dimensional ‘bouquet of
circles’, from [3]. The original dataset contains three mutually perpendicular
circles in six-dimensional space, meeting at a point

i.e. the importance of preserving relations between nearby points is empha-
sised [3]. Figure 2 illustrates how the mapping can reduce a six-dimensional
dataset to a two-dimensional one, while preserving the topological structure.

2 Details

Unlike traditional linear dimensionality reduction techniques (such as PCA),
the Sammon mapping does not explicitly represent the transformation func-
tion. Instead, it simply provides a measure of how well the result of a trans-
formation (i.e. some lower-dimensional dataset having the same number of
points as the original) reflects the structure present in the original dataset,
in the sense described above. In other words, we are attempting not to find
an optimal mapping to apply to the original data, but rather to construct
a new lower-dimensional dataset, which has structure as similar to the first
dataset as possible.

Following the paper [2] introducing the mapping, we will represent the orig-
inal dataset as N vectors in L-dimensional space, given by Xi, i = 1, . . . , N .
We seek to map these into d-dimensional space (with d < L), to give vectors
Yi, i = 1, . . . , N . For simplicity, write dij for the pairwise distance between
Yi and Yj, and similarly d∗ij for the distance between Xi and Xj (Sammon
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assumes the metric here to be Euclidean, though this is not strictly neces-
sary).

The amount of structure present in the original but lost in the transformed
dataset is then measured by an error E, defined as

E =
1∑

i<j d∗ij

n∑
i<j

(d∗ij − dij)
2

d∗ij

Essentially, the error is given by summing up the squared differences (before
versus after transformation) in pairwise distances between points; the sum-
mations are over the range i < j so that each pairwise distance is counted
once (and not a second time with i and j swapped). The tendency to preserve
topology (mentioned above) is due to the factor of d∗ij in the denominator
of the main summation, ensuring that if the original distance between two
points is small, then the weighting given to their squared difference is greater.

3 Implementation

The error E provides us with a measure of the quality of any given trans-
formed dataset. However, we still need to determine the optimal such dataset,
in terms of minimising E. Strictly speaking, this is an implementation detail
and the Sammon mapping itself is simply defined as the optimal transforma-
tion; however, in the original paper [2], Sammon describes one method for
performing the optimisation. The transformed dataset Yi is first initialised
by performing PCA on the original data (an arbitrary, random initialisa-
tion is sufficient, but using the principal components improves performance
somewhat — see below). Then, we repeatedly update the Yi using steepest
descent, considering the gradient of E with respect to the Yi, until satisfac-
tory convergence is achieved.

This optimisation problem has rather high dimensionality (proportional to
the number of data points), and hence other more modern techniques, such as
simulated annealing, could beneficially be applied in order to achieve better
convergence properties and avoid local minima.

More recently, neural network implementations of the Sammon Mapping have
been proposed — see, for example, [4] and [5]. This approach has the advan-
tage of being able to generalise — given a new vector in the high-dimensional
space, the network is able to map it to a lower-dimensional vector in a fash-
ion consistent with the rest of the dataset; this is in contrast to the basic
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form of the mapping, where there is no mechanism for dealing with new data
aside from recomputing the entire transformation. Also, in this context, [6]
discusses the merits of random versus PCA-based initialisation (see above);
it seems that using a small number of principal components to perform the
initialisation shortens the training and decreases the final error achieved.
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