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1 Background

After being proposed by L.A. Zadeh in 1965
[11][link] fuzzy set theory has been applied to a va-
riety of different fields. While debate is still ongoing
about the rigour of this theory, several studies have
been conducted on algebraic foundations of many-
valued logics (e.g. [5][link]) and many researchers
have converged to agree that, keeping clear the con-
ceptual distinction between many-valued logics and
probability theory, the subject can be approached
with mathematical rigour.
The idea behind fuzzy sets theory is that of solving
some of the problems arising in the classical West-
ern logic paradigm deriving by Aristotelian logic.
This logic proposes a binary truth value which leads
to the principle known as law of excluded middle
which states that given any proposition either it
or its negation must be true. In terms of set the-
ory this translates into a binary inclusion of ele-
ments in a set so that given set A, either a ∈ A or
a /∈ A (and hence belongs to its complement). Such
a principle, though, gives rise to several well known
paradoxes generally grouped under the class of the
Sorites paradox which suggests that if we accept
the assumption that removing a grain from a heap
of sand does not cause it to loose its state of being a
heap, the successive removal of one grain at a time
makes us categorise one grain as a heap of sand
unless we allow the removal of a specific grain to
trigger the change in classification of the quantity
to “some grains of sand”, which is unrealistic. An-
other important aspect which fuzzy set theory and
fuzzy logic try to address is how to deal with the
intrinsic vagueness of commonly used words such
as cold, high, big which cannot be defined in clas-
sical (or crisp) set theory without introducing un-
reasonable jumps in proximity of the boundary of
the classes. As an example, it is clear that setting
a specific age (say h) as a boundary between the

classes young and old, leads to the following

a = h+ ε ∈ Old
b = h− ε ∈ Y oung

even when ε → 0, classifying two people with an
infinitely small difference in age as belonging to dif-
ferent classes.
Fuzzy set theory, on the other hand, guarantees
a smooth transition between adjacent classes al-
lowing a continuous degree of membership ranging
from 0, element completely out of the set, to 1, ele-
ment completely in the set, so that two contiguous
sets overlap over a certain region in which elements
do not entirely belong to one of them. The concept
of degree of membership is central to fuzzy set the-
ory. For a given fuzzy set A defined over a space
X, with x being a generic element, the membership
function fA(x) is defined as a function assigning to
each element x its degree of membership µA(x) to
set A, so

fA(x) : x ∈ X → µA(x) ∈ [0, 1]

The ideas of degree of membership and member-
ship function will be widely used in the follow-
ing sections. Further material on fuzzy set the-
ory can be found in the websites proposed in the
“Websites” section. It is important to understand,
though, that fuzzy set theory and fuzzy logic are
not trying to offer an alternative to probability the-
ory since they are modelling vagueness rather then
uncertainty. Keeping in mind this distinction is
paramount to understand which one is more appro-
priate to model the aspects of interest (see [11][link]
for further details).

2 Fuzzy Intersection

The concept of intersection in the fuzzy set frame-
work relies upon that of triangular norm (gener-
ally referred to as t-norm). A t-norm is a generali-
sation of intersection for lattices and can be defined
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in different functional forms as long as the following
fundamental properties are guaranteed:

1. Commutativity
t(A,B) = t(B,A)

2. Monotonicity
t(A,B) ≤ t(C,D) if A ≤ C andB ≤ D

3. Associativity
t(A, t(B,C)) = t(t(A,B), C)

4. Neutrality of 1
t(A, 1) = A

moreover in fuzzy logic the t-norm is also required
to be a continuous function. Given these proper-
ties, different types of t-norms have been proposed
to implement the intersection in fuzzy set theory
and three of them are by far the most important.
The definitions are here given in terms of member-
ship functions of x ∈ X w.r.t. fuzzy sets A, B and
C = A ∩B:

1. Göedel-Dummett t-norm
fC(x) = min(fA(x), fB(x))

2. Product t-norm
fC(x) = fA(x) · fB(x)

3.  Lukasiewicz t-norm
fC(x) = max(0, fA(x) + fB(x)− 1)

The results obtained using different t-norms on the
same application case can be found in some of the
examples provided in a review paper by Isabelle
Bloch [3][link] regarding the application of fuzzy set
theory in the field of image analysis, while some
visual examples of their effects are shown in fig-
ure 1 where the horizontal axes represent fA(x)
and fB(x), and the vertical axis shows the resulting
value of fC(x). Apart from continuity, which can
be separated in left and right continuity, t-norms
can have other properties. A t-norm is said to be
Archimedean if ∀x, y ∈ (0, 1)∃n ∈ N such that
tn(x) ≤ y where tn(x) indicates the application of
the t-norm t for n times on x itself. Continuous
Archimedean t-norms, then, can be divided in two
classes: strict and nilpotent t-norms. The former
is different from the latter having 0 as the only
nilpotent element. According to this classification
 Lukasiewicz t-norm is a nilpotent Archimedean t-
norm, while the product t-norm is an Archimedean

(a) Minimum (Göedel-Dummett) t-norm

(b) Product t-norm

(c)  Lukasiewicz t-norm

Figure 1: Graph of different types of t-norms
(Source: [1])

strict t-norm.
The t-norm originally proposed by Zadeh [11][link]
is the Göedel-Dummett t-norm (also known as the
minimum t-norm) and it is still the most com-
monly used in fuzzy sets theory. It is important
to highlight that given this definition of intersec-
tion and adding the corresponding definitions of
the t-conorm used for the union operation (keep-
ing the Göedel-Dummett framework for x ∈ X
and fuzzy sets A, B and C = A ∪ B we obtain
fC(x) = max(fA(x), fB(x))) and that of comple-
ment (if c(A) is the complement of A in X we have
fc(A)(x) = 1−fA(x)) most of the properties defined
for ordinary sets (such as De Morgan’s Laws and
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Distributive Laws of intersection w.r.t. union and
vice versa) extend to fuzzy sets theory which is im-
portant for practical applications. Attention must
be paid, though, since from the given definition of
complementation follows that A ∩ c(A) 6= ∅ since
an overlap between the two sets exists in those re-
gions where 0 < fA(x) < 1. This is a substantial
difference from classical sets theory.
Interestingly some work have even been proposed
to extend the concepts of intersection and union
to fuzzy sets defined on different universes [4][link]
and the authors claim that all the usual properties
still hold.

2.1 Extension to Logic

As for classical set theory, fuzzy set theory has
a natural extension in logic. Therefore, the var-
ious concepts have been generalised to guarantee
the implementation of a structured logic. As an
example the degree of membership is extended to
be the degree of truth of a proposition, intersec-
tion and union become and and or conjunctions,
the complement is turned into the negation of the
corresponding proposition. According to the defini-
tion used for the t-norm, different propositional log-
ics are derived. Listing applications of fuzzy logic
would leave the focus of this work on fuzzy inter-
section, but plenty of literature can be found. It
must be said, though, that papers rarely put much
attention on the formal theory and focus more on
the practical aspects of applications (another rea-
son why they will not be reported here).

3 Applications

As said before most of the application found in lit-
erature are centred on fuzzy logic. Fuzzy set the-
ory, though, is used in some interesting fields to
extend the results obtained with crisp sets. What
makes these applications even more interesting is
the fact that they include far more attention to
the theoretical basis of fuzzy sets and have better
algebraic and mathematical grounding than those
centred on fuzzy logic. The three applications pre-
sented are mathematical morphology, image analy-
sis (mainly regarding spatial relationships between
objects) and image processing. Given the complex-
ity of the applications, and the necessity of a solid

background to fully understand them, the follow-
ing paragraphs are meant to give an idea of the
practical use of the theoretical aspects previously
introduced. The reader is encouraged to read the
cited papers in order to get a detailed insight into
the actual implementations.

3.1 Mathematical Morphology

Mathematical morphology is a well known theoret-
ical approach, mainly based on sets theory, which
allowed to create a series of techniques used in the
analysis of images. Mathematical morphology had
been originally formalised to work on binary (black
and white) images, but has been subsequently ex-
tended to grey-scale images [7][link]. While initially
this extension was based on crisp set theory, several
authors proposed to use fuzzy sets to deal more ef-
fectively with the grey levels which can be seen as
different degrees of membership to the black and
white sets [2][link] [6][link] [8][link]. As a result, the
original dilation and erosion in universe S of set X
with structuring element SE and SEx representing
its translation to x

DSE(X) = {x ∈ S,X ∩ SEx 6= ∅}
ESE(X) = {x ∈ S, SEx ⊆ X}

needed to be redefined, in fuzzy set theory, to be
for all x ∈ S

DSE(X)(x) = sup {t [fSE(y − x), fX(y)] , y ∈ S}
ESE(X)(x) = inf {T [c(fSE(y − x)), fX(y)] , y ∈ S}

with t being the chosen t-norm, T the correspond-
ing t-conorm, c(·) the complement operator and
fSE and fX the membership functions of SE and
X which are now fuzzy sets [3][link]. Once dila-
tion and erosion have been defined, it is possible
to derive the fuzzy version of the closing and open-
ing operations (see [6][link] which includes exten-
sive mathematical coverage of the topic) and then
manipulate grey-scale images with the new func-
tions derived.

3.2 Image Analysis

Starting from the definitions of fuzzy mathematical
morphology and introducing more concepts based
on fuzzy intersection (degree of inclusion, degree of
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intersection, fuzzy neighbourhood and fuzzy adja-
cency among the others) Bloch [3][link] shows how
fuzzy spatial relationships can be used in the anal-
ysis of images. In her paper, through a case study
based on MRI brain images, Bloch reports the good
results obtained with fuzzy sets (which outperform
crisp sets in capturing relevant aspects of the data),
and highlights how choosing different t-norms af-
fects the obtained result.

3.3 Image Processing

Shao et al. [9][link] [10][link] applied the aspects of
fuzzy sets theory explained in the previous sections
to optics, implementing optical image processors
capable of performing any required analysis and
processing on the received input. While summaris-
ing their work in few lines is impossible, it is worth
mentioning since their papers show an uncommon
and interesting application of fuzzy mathematical
morphology.

4 Final Remarks

In this short work the most important aspects of
the fuzzy intersection have been reported and com-
mented on. While it is by no means exhaustive
from the point of view of the possible applications,
this report was meant to provide the theoretical
basis which are necessary to proceed to more ad-
vanced topics, along with some examples on how
these ideas have been used in research this far.

Recommended Readings

1. Fuzzy Sets by L.A. Zadeh [11][link]

2. Fuzzy Spatial Relationships for Image Process-
ing and Interpretation : a Review by I. Bloch
[3][link]

3. Algebraic Foundations of Many-Valued Rea-
soning my R.L. Cignoli et al [5][link]

Websites

Wikipedia: Fuzzy Set Operations
Wikipedia: Fuzzy Logic

Wikipedia: Sorites Paradox
Wikipedia: T-norm
Stanford Encyclopaedia of Philosophy: Fuzzy Logic

All the websites linked in the essay have been
accessed on 30/07/2010.
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