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1 Introduction

The inverse compositional algorithm is an efficient algorithm for image alignment and
image registration. Rather than updating the additive estimate of warp parameters ∆p
(as in the Lucas-Kanade algorithm [5]), the inverse compositional algorithm iteratively
solves for an inversed incremental warp W (x;∆p)−1 (an approach referred as inverse
compositional method). The inverse compositional approach supports groupwise geo-
metric transformations, and it improves efficiency by performing most computationally
expensive calculations (i.e. the Gauss-Newton approximation to the Hessian matrix) at
the pre-computation phase.

2 The Inverse Compositional Algorithm

Image alignment consists of moving, and possibly deforming, a template to minimize the
difference between the template and an image. Suppose we are trying to align template
image T (x) to an input image I(x), where x = (x, y)T is a column vector containing
the pixel coordinates. Let W (x;p) denote the warp and p = (p1, ...pn)

T as a vector of
parameters. The goal of image alignment is to minimize the sum of squared error between
template image T (x) and the input image I(x) warped back onto the coordinate frame
of the template, ∑

x

[I(W (x;p))− T (x)]2 (1)

with respect to p, where the sum is performed over the pixel x in the template im-
age T (x). Since in general, the pixel values I(x) are non-linear in x, minimizing the
expression in Equation (1) is a non-linear task. The Lucas-Kanade algorithm solves
this problem by updating an estimate of warp parameters p and iteratively solving for
increments to ∆p, i.e. to minimize the following expression,∑

x

[I(W (x;p+∆p))− T (x)]2 (2)

with respect to ∆p, and then updating parameters p until it converges (i.e. ∥∆p∥ < ϵ)

p← p+∆p (3)
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As the name implies, the inverse compositional algorithm solves the minimization
problem of Equation (1) by updating current estimated warp W (x;p) with an inverted
incremental warp W (x;∆p)−1,

W (x;p)←W (x;p) ◦W (x;∆p)−1 (4)

while minimizing the following expression,∑
x

[T (W (x;∆p))− I(W (x;p))]2 (5)

with respect to ∆p. Here the expression W (x;p) ◦W (x;∆p)−1 is a simple bilinear
combination of the parameters of W (x;p) and W (x;∆p)−1, and it can be rewritten
as the composition warp W (W (x; ∆p);p). The Lucas-Kanade algorithm is therefore
referred as the forwards additive algorithm [3]. It is essentially equivalent to the inverse
compositional algorithm and they are both equivalent to minimizing the expression in
Equation (1) [2]. However, updating W (x;p) instead p makes the inverse compositional
algorithm eligible to any set of warps which from a group. Performing a first order Taylor
expansion on Equation (5) gives,∑

x

[T (W (x;0)) +∇T ∂W

∂p
∆p− I(W (x;p))]2 (6)

Assuming W (x;0) is the identity warp, i.e. W (x;0) = x, the solution to this least-
squares problem is,

∆p = H−1
∑
x

[∇T ∂W

∂p
]T [I(W (x;p))− T (x)] (7)

where H is the Hessian matrix,

H =
∑
x

[∇T ∂W

∂p
]T [∇T ∂W

∂p
] (8)

and the Jacobian ∂W
∂p is evaluated at (x;0). Since the Hessian matrix is independent

on the warp parameters p, it is constant across iterations. Rather than computing the
Hessian matrix in each iteration as in the forwards algorithms (e.g. the Lucas-Kanade
algorithm), we can now pre-compute the Hessian matrix before iterations, which greatly
improves efficiency. The inverse compositional algorithm can be described as follows [4],

1. Pre-computation. Pre-compute the Hessian matrixH using Equation (8), where
∇T ∂W

∂p is the steepest descent image of template T (x).

2. Image warping. Warp the input image I(x) withW (x;p) to compute I(W (x;0)).

3. Local registration. Compute the local warp parameters ∆p using Equation (7).
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4. Warp updating. Update the current warp W (x;p)←W (x;p) ◦W (x;∆p)−1.

Step 1 is done only once, Step 2 to 4 are iterated until warp converges, i.e. ∥∆p∥ < ϵ.
Assuming the number of warp parameters is n and the number of pixels in T is N ,

the computational complexity of the inverse compositional algorithm is O(nN +n3) per
iteration and O(n2N) for pre-computation (performed only once), which is a substantial
saving from the O(n2N + n3)-per-iteration Lucas-Kanade algorithm [3].

3 Example

To illustrate how the inverse compositional algorithm works, Baker et al. [1] demon-
strated an example of image alignment using this algorithm. Figure 1 is the input image
to be warped and Figure 2 is the template image.

Figure 1: Input image I(x) [1]. Figure 2: Template image T (x) [1].

Now we can follow Step 1 of the inverse compositional algorithm to pre-compute
the steepest descent image (Figure 3) and the Hessian matrix H (Figure 4).

Figure 3: Steepest descent image ∇T ∂W
∂p [1].

Figure 4: Hessian matrix H for T (x) [1].

Then we enter the inner loop of Step 2 to 4, iteratively computing local warp param-
eters ∆p (with the pre-computed H and ∇T ∂W

∂p ) and updating current warp W (x;p),
until ∆p is smaller than some threshold (Figure 5). Figure 6 shows the resulting warp
of an extracted sub-region of the input image.
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Figure 5: Parameter updates ∆p [1]. Figure 6: Resulting Warp W (x;p) [1].
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