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1 Introduction

Probabilistic Latent Semantic Analysis
(pLSA) is a technique from the category of
topic models. Its main goal is to model co-
occurrence information under a probabilistic
framework in order to discover the underlying
semantic structure of the data.

It was developed in 1999 by Th. Hofmann [7]
and it was initially used for text-based applica-
tions (such as indexing, retrieval, clustering);
however its use shortly spread in other fields:
such as computer vision [14, 16, 10] or audio
processing [5].

PLSA can be regarded in two seemingly dif-
ferent ways:

• Latent variable model. The probabilistic
structure of pLSA is based on a statisti-
cal model, called the aspect model. The
latent/hidden variables (represented by
topics/concepts) are associated with the
observed variables (represented by docu-
ments and words, for the text domain).

• Matrix factorization. Similarly to Latent
Semantic Indexing (LSI) [3], pLSA aims
to factorize the sparse co-occurrence ma-
trix in order to reduce its dimensional-
ity. However, pLSA is usually viewed
as a more sound method as it provides
a probabilistic interpretation, whereas
LSI achieves the factorization by using
only mathematical foundations (more pre-
cisely, LSI uses the singular value decom-
position method).

2 Theoretical presentation

In order to make the theoretical presenta-
tion more explicit and easy to understand we
will refer, without loss of generality, to the
text domain1. For this particular application,
our training data is a corpus—a large set of
documents—that is usually represented in the
form of a document-term matrix (this indicates
the number of times each word appears in each
document). The goal of pLSA is to use this
co-occurrence matrix to extract the so-called
“topics” and explain the documents as a mix-
ture of them.

2.1 Latent variable model

PLSA considers that our data can be expressed
in terms of 3 sets of variables:

• Documents: d ∈ D = {d1, · · · , dN}—
observed variables. Let N be their num-
ber, defined by the size of our given cor-
pus.

• Words: w ∈ W = {w1, · · · , wM}—
observed variables. Let M be the number
of distinct words from the corpus.

• Topics: z ∈ Z = {z1, · · · , zK}—latent (or
hidden) variables. Their number, K, has
to be specified a priori.

1Also the terminology used will be relevant to the
natural language processing domain (i.e., documents,
words, topics). However, it is not hard to make the
correspondences for any other domain or application
that uses co-occurrence data.
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Figure 1: The graphical model using plate rep-
resentation. It describes the generative process
for each of the N documents in the collection.
Nw denotes the number of words in document
d. Each word w has associated a latent con-
cept z from which is generated. The shaded
circles indicate observed variables, while the
unshaded one represents the latent variables.

These are linked in a graphical model (based
on the aspect model) that associates the topics
z with the observed pairs (d,w) (see Figure 1).
This also describes a generative process for the
documents [4]:

• First we select a document dn with prob-
ability P (d).

• For each word wi, i ∈ {1, · · · , Nw} in the
document dn:

– Select a topic zi from a multinomial
conditioned on the given document
with probability P (z|dn).

– Select a word wi from a multinomial
conditioned on the previous chosen
topic with probability P (w|zi).

There are some important assumptions made
by the presented model:

• Bag-of-words. Intuitively, each document
is regarded as an unordered collection of
words2. More precisely, this means that
the joint variable (d,w) is independently

2http://en.wikipedia.org/wiki/Bag_of_words_

model Date last accessed: 06/04/2011

sampled and, consequently, the joint dis-
tribution of the observed data will factor-
ize as a product:

P (D,W) =
∏
(d,w)

P (d,w).

• Conditional independence. This means
that words and documents are condi-
tionally independent given the topic:
P (w, d|z) = P (w|z)P (d|z) or P (w|d, z) =
P (w|z). (This can be easily proved by us-
ing d-separation into our graphical model:
the path from d to w is blocked by z.)

The model can be completely defined by spec-
ifying the joint distribution. We can obtain
P (d,w) by using the product rule:

P (d,w) = P (d)P (w|d)

P (w|d) =
∑
z∈Z

P (w, z|d)

=
∑
z∈Z

P (w|d, z)P (z|d).

Using the conditional independence assump-
tion, we obtain:

P (w|d) =
∑
z∈Z

P (w|z)P (z|d) (1)

P (w, d) =
∑
z∈Z

P (z)P (d|z)P (w|z). (2)

Equation 1 is the mathematical represen-
tation of the mixture model (see Figure 2).
The parameters of the model are P (w|z) and
P (z|d); their number is (M−1)K, respectively
N(K − 1), which means that the total number
of parameters grows linearly with the size of
the corpus3 and the model becomes prone to
overfitting (as stated in [1]). The parameters

3We have (M − 1)K parameters for P (w|z), in-
stead of MK, because of the normalization constraint∑

w∈W P (w|z) = 1, ∀z ∈ Z. The same reasoning ap-
plies for the other case, P (z|d).
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Figure 2: The general structure of pLSA
model. This shows the intermediate layer of
latent topics that links the documents and the
words: each document can be represented as
a mixture of concepts weighted by the proba-
bility P (z|d) and each word expresses a topic
with probability P (w|z).

can be estimated via likelihood maximization,
by finding those values that maximize the pre-
dictive probability for the observed word oc-
currences. The predictive probability of pLSA
mixture model is denoted by P (w|d), so the
objective function is given by the following ex-
pression:

L =
∏
(d,w)

P (w|d) =
∏
d∈D

∏
w∈W

P (w|d)n(d,w) (3)

where n(d,w) represents the observed frequen-
cies, the number of times word w appears in
document d. This is a non-convex optimiza-
tion problem and it can be solved by using
Expectation-Maximization (EM) algorithm for
the log-likelihood:

L = logL =
∑
d∈D

∑
w∈W

n(d,w)

· log
∑
z∈Z

P (w|z)P (z|d). (4)

In the original paper [7], in order to avoid
overfitting the author suggested an alternative
heuristic approach for training—a “tempered”
version of EM algorithm, similar to determin-
istic annealing [15].

2.2 Matrix factorization

Another way to present pLSA is as a matrix
factorization approach. The document-word
matrix that defines our dataset is a very large
and sparse matrix; it has as many rows as doc-
uments N , and the number of columns is equal
to the number of different words M that ap-
pear in our corpus. Its sparseness comes from
the from the fact that only a small percentage
of the words are used in each document de-
pending on its particular topic. So, the idea is
to somehow reduce the dimensionality of our
document-word matrix as most of its entries
are zero and do not offer particular informa-
tion. This can be achieved by approximating
the co-occurrence matrix (which it will be de-
noted by A) as a product of two low-rank (thin-
ner) matrices L and R. For example:

A ≈ Â = L ·R. (5)

So, if the size of L is N×K and the size of R is
K ×M , with K � M,N , then this will fullfil
the dimensionality reduction task, because N ·
M � N · K + K · M . Apart from this, we
also expect that our matrices L and R reveal
information about the latent structure of the
data.

If we look back to Equation 1, we easily ob-
serve that what pLSA does is exactly a ma-
trix factorization of the conditional distribu-
tion P (w|d). In order to obtain the factoriza-
tion of the full co-occurrence data P (w, d), we
use Equation 2. In terms of matrix notation,
that can be rewritten as follows:

A = L · U ·R. (6)
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Figure 3: Alternative view of pLSA as a matrix decomposition technique. The matrix A denotes
the document-term matrix. The green row represents the probabilities over a document P (d|z),
the blue diagonal represents the probabilities over all the topics P (z) and the red column
corresponds to the probabilites of a word being generated by each topic P (w|z).

where he have the following relations (see Fig-
ure 3):

• L contains the document probabilities
P (d|z).

• U is a diagonal matrix of the prior proba-
bilities of the topics P (z).

• R corresponds to the word probability
P (w|z).

These matrices are non-negative and normal-
ized, as they represent probability distribution.
Consequently, these properties ensure different
results from plain LSI, which uses SVD and
does not impose any constraints.

3 Applications to computer
vision

3.1 Object categorization

One extension of the pLSA model for com-
puter vision applications was done by Sivic et
al. [16]; they used this model on sets of images
in order to extract object categories in an unsu-
pervised manner. Also, they were able to clas-
sify novel images with the help of the learned
objects and to segment images by grouping to-
gether local features that belong to a certain
object.

The standard pLSA framework (described
in Section 2) was used; however, instead of
documents the algorithm operated on images,
the words were substituted by patches/visual
words, and the topic was represented by a cat-
egory of an object. The most acute difference
from the previous case is that the “words” are
not clearly specified for a set of pictures. These
can be achieved in three steps4:

Feature detection Elliptical regions are ex-
tracted using an affine invariant inter-
est point detector [12]—this technique is
also known as Harris-affine detector and
it “can identify similar regions between
images that are related through affine
transformation and have different illumi-
nations”5 (see Figure 4a, first 3 rows).

Feature representation The previously de-
tected patches are scaled to circles (see
Figure 4a, last row) and their scale-
invariant feature transform (SIFT) [11]
descriptor is computed.

Codebook generation As there are a huge
number of resulted visual words (around

4http://en.wikipedia.org/wiki/Bag_of_words_

model_in_computer_vision Date last accessed:
06/04/2011

5http://en.wikipedia.org/wiki/Harris_affine_

region_detector Date last accessed: 06/04/2011
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(a) Examples of a visual “words” (source:
[16]).

(b) Example of a dictionary (source:
[9]).

Figure 4: The steps performed for obtaining the set of codewords.

hundred of thousands [16]) their number
is reduced through the process of vector
quantization (to approximately 2000)—
they are clustered using k-means algo-
rithm and each cluster will be represented
by its centroid (see Figure 4b). Thus a
dictionary of “words” is determined and
each image can be represented as a “bag”
of these patches; consequently, the en-
tire dataset can be represented as a co-
occurrence matrix.

In the following, we briefly describe how
pLSA was applied for different goals:

Object categorization The training process
of pLSA yields the probabilities P (z|d)
and P (w|z); using P (z|dn) for each
image dn, the images were classified
as containing object k, where k =
argmaxzk∈Z P (zk|dn).

Classify unseen images New images are
classified by using the so-called “fold-in”
technique. First, the standard training
procedure (the EM algorithm) is done on
the dataset. When we have a new query
image dnew the training algorithm is re-
run, but this time P (w|z) are kept fixed to
their previous values, while only P (z|dnew)

is updated. In this manner we obtain the
mixing coefficients P (z|dnew) for the un-
seen image.

Segmentation Spatial segmentation can be
achieved by using the posterior distribu-
tion:

P (z|w, d) =
P (w|z, d)P (z|d)

P (w|d)
=

=
P (w|z)P (z|d)∑
z∈Z P (w|z)P (z|d)

.

This gives us the probability of every word
in an image of being generated by a certain
topic. In [16], they selected the words that
have a probability larger than 0.8.

3.2 Auto-annotation

Monay et al. addressed the problem of im-
age auto-annotation with pLSA model [13, 14].
In their first work [13], they use a pLSA-
mixed system where every document is rep-
resented by a pair image-annotation and the
words are a concatenation of visual words and
textual words (that are present in the anno-
tation). This approach is based on the fact
that the latent topics are the same for both
the visual words and the text. However, for
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datasets where the visual modality does not
correspond to textual modailty, this method
has drawbacks; this happens because if two
pLSA models are fitted—one on images and
the other on text—they learn different topics
[14]. In their next paper [14], they use two
linked pLSA models that share the distribution
over the topics P (z|d). The learning process is
done in two steps: first a model is fitted only
to the textual information and then the other
model uses the previously obtained P (z|d) and
learns the distribution over the visual words
P (visual words|z). In this way the semantic
consistency is ensured.

Further reading

• Original papers that introduce pLSA [7,
6, 8].

• Latent Dirichlet Allocation (Bayesian ver-
sion of pLSA) [1] and its application to
computer vision [9].

• Other applications of pLSA to computer
vision:

– Scene classificaion via pLSA [2].

– Multilayer pLSA for mutlimodal im-
age retrieval [10].
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Xavier Muñoz. Scene classification via
pLSA. In In Proc. ECCV, pages 517–530,
2006.

[3] Scott Deerwester. Improving Informa-
tion Retrieval with Latent Semantic In-
dexing. In Christine L. Borgman and
Edward Y. H. Pai, editors, Proceedings
of the 51st ASIS Annual Meeting (ASIS
’88), volume 25, Atlanta, Georgia, Octo-
ber 1988. American Society for Informa-
tion Science.

[4] Kevin Gimpel. Modelling topics.
http://www.cs.cmu.edu/~nasmith/

LS2/gimpel.06.pdf, 2006. Date last
accessed: 06/04/2011.

[5] Matthew D. Hoffman, David M. Blei, and
Perry R. Cook. Finding latent sources
in recorded music with a shift-invariant
hdp. In International Conference on Dig-
ital Audio Effects (DAFx), 2009.

[6] Thomas Hofmann. Probabilistic latent se-
mantic analysis. In Proc. of Uncertainty
in Artificial Intelligence, UAI’99, Stock-
holm, 1999.

[7] Thomas Hofmann. Probabilistic latent se-
mantic indexing. In Proceedings of the
22nd annual international ACM SIGIR
conference on Research and development
in information retrieval, SIGIR ’99, pages
50–57, New York, NY, USA, 1999. ACM.

[8] Thomas Hofmann. Unsupervised learning
by probabilistic latent semantic analysis.
Mach. Learn., 42:177–196, January 2001.

[9] Fei-Fei Li and Pietro Perona. A bayesian
hierarchical model for learning natural
scene categories. In Proceedings of the
2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recogni-
tion (CVPR’05) - Volume 2 - Volume 02,
CVPR ’05, pages 524–531, Washington,
DC, USA, 2005. IEEE Computer Society.

6



[10] Rainer Lienhart, Stefan Romberg, and
Eva Hörster. Multilayer pLSA for mul-
timodal image retrieval. In Proceeding of
the ACM International Conference on Im-
age and Video Retrieval, CIVR ’09, pages
9:1–9:8, New York, NY, USA, 2009. ACM.

[11] David G. Lowe. Object recognition from
local scale-invariant features. In Proceed-
ings of the International Conference on
Computer Vision-Volume 2 - Volume 2,
ICCV ’99, pages 1150–, Washington, DC,
USA, 1999. IEEE Computer Society.

[12] K. Mikolajczyk and C. Schmid. An affine
invariant interest point detector. In Pro-
ceedings of the 7th European Conference
on Computer Vision-Part I, ECCV ’02,
pages 128–142, London, UK, UK, 2002.
Springer-Verlag.

[13] Florent Monay and Daniel Gatica-Perez.
On image auto-annotation with latent
space models. In Proceedings of the
eleventh ACM international conference on
Multimedia, MULTIMEDIA ’03, pages
275–278, New York, NY, USA, 2003.
ACM.

[14] Florent Monay and Daniel Gatica-Perez.
PLSA-based image auto-annotation: con-
straining the latent space. In Proceed-
ings of the 12th annual ACM interna-
tional conference on Multimedia, MULTI-
MEDIA ’04, pages 348–351, New York,
NY, USA, 2004. ACM.

[15] K. Rose, E. Gurewwitz, and G. Fox. A
deterministic annealing approach to clus-
tering. Pattern Recogn. Lett., 11:589–594,
September 1990.

[16] J. Sivic, B. C. Russell, A. A. Efros, A. Zis-
serman, and W. T. Freeman. Discovering
object categories in image collections. In

Proceedings of the International Confer-
ence on Computer Vision, 2005.

7


