Markov Chain Monte Carlo for Compute	er V	ision
A tutorial at the 10 th Int'l Conf. on Computer Vision October, 2005, Beijing		
by		
Song-Chun Zhu, UCLA Frank Dellaert, Gatech Zhuowen Tu, UCLA		
ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu	October	2005

What is Markov Chain?

A **Markov chain** is a mathematical model for stochastic systems whose states, discrete or continuous, are governed by a transition probability. The current state in a Markov chain only depends on the most recent previous states, e.g. for a 1st order Markov chain.

The **Markovian property** means "locality" in space or time, such as Markov random fields and Markov chain. Indeed, a discrete time Markov chain can be viewed as a special case of the Markov random fields (causal and 1-dimensional).

A **Markov chain** is often denoted by (Ω, v, K) for state space, initial and transition prob.

ICCV05 Tutorial: MCMC for Vision.

Zhu / Dellaert / Tu

October 2005

Task 1: Sampling and simulation

For many systems, their states are governed by some probability models. e.g. in statistical physics, the microscopic states of a system follows a Gibbs model given the macroscopic constraints. The fair samples generated by MCMC will show us what states are *typical* of the underlying system. In computer vision, this is often called "*synthesis*" --- the visual appearance of the simulated images, textures, and shapes, and it is a way to *verify* the sufficiency of the underlying model.

Suppose a system state x follows some global constraints.

$$x \in \Omega = \{x : H_i(x) = h_i, i = 1, 2, ..., K\}$$

Hi(s) can be a hard (logic) constraints (e.g. the 8-queen problem), macroscopic properties (e.g. a physical gas system with fixed volume and energy), or statistical observations (e.g the Julesz ensemble for texture).

ICCV05 Tutorial: MCMC for Vision.

Zhu / Dellaert / Tu

October 2005

Ex. 2 Simulating typical textures

Julesz's quest 1960-80s

Ex 4: Monte Carlo integration

Often we need to estimate an integral in a very high dimensional space Ω ,

$$c = \int_{\Omega} \pi(x) f(x) dx$$

We draw N samples from $\pi(x)$,

 $x_1, x_2, ..., x_N \sim \pi(x)$

Then we estimate C by the sample mean

$$\hat{c} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

For example, we estimate some statistics for a Julesz ensemble $\pi(x;\theta)$,

$$\mathsf{C}(\theta) = \int_{\Omega} \pi(\mathsf{x};\theta) \mathsf{H}(\mathsf{x}) \mathsf{d}\mathsf{x}$$

Zhu / Dellaert / Tu

ICCV05 Tutorial: MCMC for Vision.

October 2005

Ex 5: Approximate counting in polymer study

3

3 2

October

2005

Computing K by MCMC simulation

$$\begin{aligned} \mathsf{K} &= \sum_{\mathsf{r}\in\Omega_{\mathsf{n}^2}} \mathsf{1} = \sum_{\mathsf{r}\in\Omega_{\mathsf{n}^2}} \frac{1}{p(r)} p(r) \\ &= E[\frac{1}{p(r)}] \\ &\approx \frac{1}{M} \sum_{i=1}^M \frac{1}{p(r_i)} \end{aligned}$$

Sampling SAWs r_i by random walks (roll over when it fails).

$$p(r) = \prod_{j=1}^{m} \frac{1}{k(j)}$$

ICCV05 Tutorial: MCMC for Vision.

Zhu / Dellaert / Tu

<text><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

1942-46: F 	Real use of MC study of atomic	started durin bomb (neutr	g the WWII	ı in fissile m	naterial)		
1948: Ferr ر	ni, Metropolis, I of the Schrodin	Jlam obtaine ger equation:	d MC estim s.	ates for the	eigenvalu	es	
1950s: Foi a	rmating of the b applications to ؛	asic constructstatistical phy	ction of MC	MC, e.g. th , such as Is	e Metropoli ing model	s metho	d
1960-80: n	Using MCMC to nacro molecule	o study phase s (polymers),	e transition; , etc.	material gr	owth/defec	:t,	
1980s: Gi	bbs samplers, global optimiza	Simulated an ition; image ɛ	nealing, da and speech;	ta augment ; quantum f	ation, Swei ield theory,	ndsen-W	/ar

