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Common Questions

1. Why do we need MCMC? 

2. Isn’t it trivial to sample from a probability?

3.   What can MCMC do for me?

4.    Are MCMC methods always slow?
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Topics of the tutorial

1. Introduction to Markov Chain Monte Carlo
--- history, concepts, examples, why using MCMC, basics.

2. Two basic designing tools
--- Gibbs sampler, Metropolis-Hastings.

3. A variety of tricks for MCMC design
--- hit-and-run, Metropolized Gibbs, data augmentation, clustering, slice sampling

4. Reversible jumps
--- trans-dimensional sampling,  Rao-Blackwellization.

5. Data-driven Markov Chain Monte Carlo (DDMCMC)
---traversing complex state space, integrating generative and discriminative models.

6. Cluster sampling
--- Swendsen-Wang and generalizations.

7. Convergence analysis and exact sampling techniques
--- convergence rate, exact sampling. 
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Lect 1:  Introduction to MCMC

1. What is Markov chain Monte Carlo?
2.    Why using MCMC?

--- Simulation, optimization, estimation
3.    Examples
4.     Computing with two categories of models in vision: 

--- Descriptive and generative
5.    Brief history of MCMC
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What is Markov Chain?

xt-1 xt xt+1

A Markov chain is a mathematical model for stochastic systems whose states, discrete
or continuous, are governed by a transition probability. The current state in a Markov 
chain only depends on the most recent previous states, e.g. for a 1st order Markov chain. 

The Markovian property means “locality” in space or time, such as Markov random 
fields and Markov chain. Indeed, a discrete time Markov chain can be viewed as a
special case of the Markov random fields (causal and 1-dimensional).

A Markov chain is often denoted by (Ω, ν, K) for state space, initial and transition prob.
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What is Monte Carlo ?
Monte Carlo is a small hillside town in Monaco (near Italy) with casino since 1865 like 
Los Vegas in the US. It was picked by a physicist Fermi (Italian born American) who 
was among the first using the sampling techniques in his effort building the first man-
made nuclear reactors in 1942.

Monte Carlo casino

What is in common between a Markov chain and the Monte Carlo casino?

They are both driven by random variables --- running dice !
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What is Markov Chain Monte Carlo ?

MCMC is a general purpose technique for generating fair samples from a probability
in high-dimensional space, using random numbers (dice) drawn from uniform probability
in certain range.                A Markov chain is designed to have π(x) being its stationary 
(or invariant) probability.

xt-1 xt xt+1

zt-1 zt zt+1

Markov chain
states

Independent
trials of dice

This is a non-trivial task when π(x) is very complicated in very high dimensional spaces !
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MCMC as a general purpose computing technique

Task 1: Simulation: draw fair (typical) samples from a probability which governs a system.

Task 2: Integration / computing in very high dimensions, i.e. to compute

Task 3: Optimization with an annealing scheme

Task 4: Learning:   
unsupervised learning with hidden variables (simulated from posterior) 
or MLE learning of parameters p(x; θ) needs simulations as well.

ion.configurataiss,π(x)~x

π(x)argmaxx* =

∫== (x)dsπ(x)(x)]E[c ff
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Task 1: Sampling and simulation
For many systems, their states are governed by some probability models. e.g. in 
statistical physics, the microscopic states of a system follows a Gibbs model given the 
macroscopic constraints. The fair samples generated by MCMC will show us what 
states are typical of the underlying system.  In computer vision, this is often called 
"synthesis" ---the visual appearance of the simulated images, textures, and shapes, 
and it  is a way to verify the sufficiency of the underlying model. 

Suppose a system state x follows some global constraints.

Hi(s) can be a hard (logic) constraints (e.g. the 8-queen problem), macroscopic
properties (e.g. a physical gas system with fixed volume and energy), or statistical
observations (e.g the Julesz ensemble for texture). 
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Ex. 1  Simulating noise image

We define a “noise” pattern as a set of images with fixed mean and variance.

This image example is a “typical image” of the Gaussian model. 
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Ex. 2  Simulating typical textures

early vision  
(0.1-0.4sec)

Julesz’s quest 1960-80s

“What features and statistics are characteristics of a
texture pattern, so that texture pairs that share the 
same features and statistics cannot be told apart  
by  pre-attentive human visual perception?”

His quest was not answered partly due to the lack of general techniques for generating
fair texture pairs that share the same features and statistics, no more no less. 
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Ex. 2  Simulating typical textures by MCMC

Iobs Isyn ~ Ω(h) k=0

(Zhu et al, 1996-01)

Isyn ~ Ω(h) k=1

Isyn ~ Ω(h) k=3 Isyn ~ Ω(h) k=7Isyn ~ Ω(h) k=4
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Hc are histograms of Gabor filters, i.e. marginal distributions of f (I) 
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Ex 3: Simulating typical protein structures

We are interested in the typical configurations, of protein folding given some known 
properties.  The set of typical configurations is often huge ! 

[From ref book by Jun Liu]

Molecular dynamcs
Poteintial energy function  
Kinetic energy 
Total energy

Statistical physics
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Task 2: Scientific computing 

In scientific computing, one often needs to compute the integral in very high dimensional 
space. 

Monte Carlo integration,
e.g. 

1. estimating the expectation by empirical mean. 
2. importance sampling

Approximate counting (so far, not used in computer vision)
e.g.

1. how many non-self-intersecting paths are in a 2 n x n lattice of length N? 
2. estimate the value of π by generating uniform samples in a unit square. 
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Ex 4: Monte Carlo integration
Often we need to estimate an integral in a very high dimensional space Ω,

We draw N samples from π(x), 

Then we estimate C by the sample mean

For example, we estimate some statistics for a Julesz ensemble π(x;θ), 
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Ex 5: Approximate counting in polymer study

For example, what is the number K of Self-Avoiding-Walks in an n x n
lattice?

Denote the set of SAWs by

An example of n=10.    (Persi Diaconis)

The estimated number by Knuth was 

The truth number is 
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Ex 5: Approximate counting in polymer study

Sampling SAWs ri by random walks (roll over when it fails).

Computing K by MCMC simulation

2

3
3
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Task 3: Optimization and Bayesian inference  

A basic assumption, since Helmholtz (1860), is that biologic and machine vision 
compute the most probable interpretation(s) from input images. 

Let I be an image and X be a semantic representation of the world.

In statistics, we need to sample from the posterior and keep multiple solutions.

π

X
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1. The state space Ω in computer vision often has a large number of sub-spaces of 
varying dimensions and structures, because of the diverse visual patterns in images.

Traversing Complex State Spaces

2.  Each sub-space is a product of  
some partition (coloring) spaces ---- what go with what?
some object spaces ---- what are what?

iΩ

partition
spaces

1CΩ 1CΩ

2CΩ 2CΩ 2CΩ

3CΩ 3CΩ

object spaces

pΩ
pΩ

object particles

3.  The posterior has low entropy, the effective volume of the search space is relatively small !
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Summary

1. MCMC is a general purpose technique for sampling from complex 
probabilistic models.

2. In high dimensional space, sampling is a key step for 
(a) modeling (simulation, synthesis, verification)
(b) learning (estimating parameters)
(c) estimation (Monte Carlo integration, importance sampling)
(d) optimization (together with simulated annealing).

2. As Bayesian inference have become a major framework in computer
vision, the MCMC technique is a useful tool of increasing importance
for more and more advanced vision models.  
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Two categories of graph structures in vision

In computer vision, the target probability π(x) is often defined on a graph representation
G=<V, E>.  We divide G in two types of graph structures, and thus the Markov chains 
are designed accordingly.

1. Descriptive models on a plat graph where all vertices are semantically at the
same level, e.g. various Markov random fields

image segmentation,  graph partition/coloring,   shape from X…

2. Generative models on a hierarchic And-Or graph with multiple levels of vertices
where a high level vertex is divided into various components at the low level.
e.g. Markov trees, sparse coding,

object recognition, image parsing, etc

In advanced models, these two structures are integrated because the vertices at
each level of a generative model are connected by contextual horizontal links which
Represent various relations among the vertices 

ICCV05 Tutorial: MCMC for Vision.                   Zhu / Dellaert / Tu                                                         October        2005

To Clarify the terminology
Descriptive or declarative 
(Constraint-satisfaction,  Markov random fields, 
Gibbs, Julesz ensemble)

Variants of Descriptive 
(Causal Markov Models,

Markov chain, Markov tree, DAG etc)

Generative (+ Descriptive)
(hidden Markov, hierarchic model
decomposing whole to parts)

Discriminative
(discriminating the whole
using the parts)
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MCMC on descriptive models

vertices

possible values

[Relaxation labeling, belief propagation ], Gibbs sampler, Swendsen-Wang, …

Issues in algorithm design:
1. Visiting schedule.

which vertex is more informative to visit next.
2. Computing joint solution or marginal belief.

the marginal believe may be conflicting to each other.
3. Clustering strongly-coupled sub-graphs for effective moves.

the Swendson-Wang ideas.
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Ex 6: Line drawing interpretation

Label the edges of a line drawing (graph) so that they are consistent

This is also constraint-satisfaction problem on a graph G=<V,E>.

Here each vertex has a set of hard constraints for the labeling of
edges ending at the vertex. 
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Ex 6: Line drawing interpretation

allowed edge labels allowed junction labels
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MCMC on generative models
Metropolis-Hastings, Reversible jumps, DDMCMC, top-down / bottom-up message passing

Issues in algorithm design:
1. Reversibility is a concept similar to backtracking in AI search.

2. Constructing sufficient operators (dynamics) to traverse the entire state space

3. Ordering various Markov chain dynamics (top-down or bottom-up)

OR-node

AND-node
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Ex 7: Images parsing

Parsing an image into its constituent visual patterns. The parsing graph below is a solution graph with AND-nodes
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Tu, Chen, Yuille, and Zhu  2003

Input Regions Objects Synthesis

Ex 7: Images parsing
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Ex 7. from image parsing to 3D

“Bayesian Reconstruction of 3D Shapes and Scenes From A Single Image”, F. Han and S.C. Zhu,
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Ex.8 3D Reconstruction via Monte-Carlo EM
Dellaert, Seitz, Thorpe, & Thrun, 2000

Given: images without 
correspondence

MCMC inference on very large 
space of correspondences 
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Ex. 9 MCMC-Based Particle Filters 
Khan, Balch & Dellaert

Estimating how many targets.

Ground truth vs estimated number.
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Ex. 9 MCMC-Based Particle Filters
Khan, Balch & Dellaert

Running particle filters in large state 
spaces (ants, bees, people, sports) 

Blue: lose track occurs,
Red: pixel errors per target

20 individual particle filtering

MCMC-based particle filtering
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Ex. 10  Inference in SLDS Models
Oh, Rehg, Balch, & Dellaert, AAAI 2005

Labels L

Observations Z

Continuous States X

Honeybee Dance

Approx. Viterbi

Ground Truth

MCMC MAP label

Switching Linear Dynamic Systems

ICCV05 Tutorial: MCMC for Vision.                   Zhu / Dellaert / Tu                                                         October        2005

A Brief History of MCMC

1942-46: Real use of MC started during the WWII 
--- study of atomic bomb (neutron diffusion in fissile material)

1948: Fermi, Metropolis, Ulam obtained MC estimates for the eigenvalues
of the Schrodinger equations.

1950s: Formating of the basic construction of MCMC, e.g. the Metropolis method
--- applications to statistical physics model, such as Ising model

1960-80:  Using MCMC to study phase transition; material growth/defect, 
macro molecules (polymers), etc.

1980s:  Gibbs samplers, Simulated annealing, data augmentation, Swendsen-Wang, etc
global optimization; image and speech; quantum field theory, 

1990s:  Applications in genetics;  computational biology.
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Special cases

When the underlying graph G is a chain structure, then things are much simpler
and many algorithms become equivalent.

Dynamic programming (Bellman 1957)
= Gibbs sampler (Geman and Geman 1984)
= Belief propagation (Pearl, 1985)
= exact sampling
= Viterbi (HMM 1967)
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Some MCMC developments related to vision

Metropolis 1946

Hastings 1970

Waltz 1972 (labeling)

Rosenfeld, Hummel, Zucker 1976 (relaxation)

Geman brothers 1984, (Gibbs sampler)

Swendsen-Wang 1987 (clustering)

Miller, Grenander,1994

Heat bath
Kirkpatrick 1983

Green 1995

Swendsen-Wang Cut 2003 DDMCMC 2001-2005


