Markov chain Monte Carlo Basics			
Frank Dellaert			
	Z7u\| Delleet Tu		205

References

- Smith \& Gelfand, Bayesian Statistics Without Tears
- MacKay, Introduction to Monte Carlo Methods
- Gilks et al, Introducing MCMC
- Gilks et al, MCMC in Practice
- Neal, Probabilistic Inference using MCMC Methods
- Robert \& Casella, Monte Carlo Statistical Methods

| ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu | October 2005 |
| :--- | :--- | :--- | :--- |

Outline

- Inference and Estimation via Sampling
- Ways to Sample
- Markov Chains
- Metropolis-Hastings
- Metropolis \& Gibbs
$\begin{array}{llll}\text { ICCV05 Tutorial: MCMC for Vision. } \quad \text { Zhu / Dellaert/Tu } & \text { October } & 2005\end{array}$

Recap: Bayes Law

$\mathrm{P}(\mathrm{x} \mid \mathrm{z}) \sim \mathrm{L}(\mathrm{x} ; \mathrm{z}) \mathrm{P}(\mathrm{x})$

Example: 1D Robot Localization

Example: 2D Robot Location

Sampling Advantages

- Arbitrary densities
- Memory = O(\#samples)
- Only in "Typical Set"
- Great visualization tool !
- minus: Approximate

Outline

- Inference and Estimation via Sampling
- Ways to Sample
- Markov Chains
- Metropolis-Hastings
- Metropolis \& Gibbs

Inference $=$ Monte Carlo Estimates

- Estimate expectation of any function f :

$$
\begin{gathered}
E_{P(x)}[f(x)]=\int_{x} f(x) P(x) d^{N} x \\
E_{P(x)}[f(x)] \approx \frac{1}{R} \sum_{r=1}^{R} f\left(x^{(r)}\right)
\end{gathered}
$$

$$
\begin{array}{lll}
\text { ICCV05 Tutorial: MCMC for Vision. } \quad \text { Zhu / Dellaert/ Tu } & \text { October } 2005
\end{array}
$$

\square

How to Sample?

- Target Density $\pi(\mathrm{x})$
- Assumption: we can evaluate $\pi(x)$ up to an arbitrary multiplicative constant
- Why can't we just sample from $\pi(\mathrm{x})$??

How to Sample?

- Numerical Recipes in C, Chapter 7
- Transformation method: Gaussians etc...
- Rejection sampling
- Importance sampling

Rejection Sampling

- Target Density $\pi(x)$
- Proposal Density $q(x)$
- π and q need only be known up to a factor

Image by MacKay
ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu
October 2005

Importance Sampling	
- Sample $\mathrm{x}^{(\mathrm{r})}$ from $\mathrm{q}(\mathrm{x})$ - $\mathrm{w}_{\mathrm{r}}=\pi\left(\mathrm{x}^{(\mathrm{r})}\right) / \mathrm{q}\left(\mathrm{x}^{(\mathrm{r})}\right)$	
	Image by MacKay October 2005

1D Importance Sampling

ICCVI

Segmentation Example

- Binary Segmentation of image

$\begin{array}{ll}\text { ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/Tu } & \text { October } 2005\end{array}$

Representation P(Segmentation)

- Histogram ? No !
- Assume pixels independent

$$
\mathrm{P}\left(\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{2} \ldots\right)=\mathrm{P}\left(\mathrm{x}_{1}\right) \mathrm{P}\left(\mathrm{x}_{2}\right) \mathrm{P}\left(\mathrm{x}_{3}\right) \ldots
$$

- Approximate solution: mean-field methods
- Approximate solution: samples !!!

Probability of a Segmentation

- Very high-dimensional
- $256 * 256$ pixels $=65536$ pixels
- Dimension of state space $\mathrm{N}=65536$!!!!
- \# binary segmentations = finite !
- $2^{65536}=2 * 10^{19728} \gg 10^{79}=$ atoms in universe
ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu October 2005

Sampling in High-dimensional Spaces

Standard methods fail:

- Rejection Sampling
- Rejection rate increase with N -> 100%
- Importance Sampling
- Same problem: vast majority weights -> 0

| ICCV05 Tutorial: MCMC for Vision. \quad Zhu / Dellaert/ Tu | October 2005 |
| :--- | :--- | :--- |

Outline

- Inference and Estimation via Sampling
- Ways to Sample
- Markov Chains
- Metropolis-Hastings
- Metropolis \& Gibbs

ICCV05 Tutorial: MCMC for Vision.
Zhu / Dellaert/Tu
October 2005

A simple Markov chain

The Web as a Markov Chain

Where do we end up if we click hyperlinks randomly?

Answer: stationary distribution!
ICCV05 Tutorial: MCMC for Vision.
Zhu / Dellaert / Tu
October 2005

Eigen-analysis

Outline

- Inference and Estimation via Sampling
- Ways to Sample
- Markov Chains
- Metropolis-Hastings
- Metropolis \& Gibbs

- Empirical average

$$
\frac{1}{T} \sum_{t-1}^{T} h\left(x^{(t)}\right)
$$

converges to the expectation $E_{\pi}[h(x)]$ where π is the stationary distribution

- Reason: chain is ergodic: forgets initial x_{0}
- In theory: no need to run multiple chains

ICCV05 Tutorial: MCMC for Vision.
Zhu / Dellaert/ Tu October 2005

Markov chain Monte Carlo

- In high-dimensional spaces:
- Start at $\mathrm{x}_{0} \sim \mathrm{q}_{0}$
- Propose a move $K\left(x_{t}, x_{t+1}\right)$

- K never stored as a big matrix ©
- K as a function/search operator

ICCV05 Tutorial: MCMC for Vision.	Zhu / Dellaert/ Tu	October	2005

-

How do get the right chain?

- How do we construct a transition kernel K such that π is the stationary distribution?
- Idea: take a proposal distribution $\mathrm{q}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ that is irreducible and recurrent
- Tweak it to yield π

- Similar idea as importance/rejection sampling
- Irreducible: you can get anywhere from anywhere
- Recurrent: you will visit any state infinitely often

ICCV05 Tutorial: MCMC for Vision.
Zhu / Dellaert/ Tu

Localization Eigenvectors

1.0000

0.9962

ICCV

Detailed Balance

- A sufficient condition to converge to $\pi(\mathrm{x})$:
$\mathrm{K}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \pi(\mathrm{x})=\mathrm{K}\left(\mathrm{x}^{\prime}, \mathrm{x}\right) \pi\left(\mathrm{x}^{\prime}\right)$
"Detailed Balance"
- Example that works:
$0.5 * 9 / 14=0.9 * 5 / 14$

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu
October
2005

Tweak: Reject fraction of moves!

- Detailed balance not satisfied:
$-\mathrm{q}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) 1 / 3=\mathrm{q}\left(\mathrm{x}^{\prime}, \mathrm{x}\right) 2 / 3$
- Tweak: insert factor a:
- $0.5 * 1 / 3=\mathrm{a} * 0.9 * 2 / 3$

- $\mathrm{a}=0.5 * 1 / 3 /(0.9 * 2 / 3)$
$=5 / 18$

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu
October 2005

Metropolis-Hastings Algorithm

This leads to the following algorithm:
0 . Start with $\mathrm{x}^{(0)}$, then iterate:

1. propose x^{\prime} from $\mathrm{q}\left(\mathrm{x}^{(\mathrm{t})}, \mathrm{x}^{\prime}\right)$
2. calculate ratio

$$
a=\frac{\pi\left(x^{\prime}\right) q\left(x^{\prime}, x^{(t)}\right)}{\pi\left(x^{(t)}\right) q\left(x^{(t)}, x^{\prime}\right)}
$$

3. if $\mathrm{a}>1$ accept $\mathrm{x}^{(\mathrm{t}+1)}=\mathrm{x}^{\prime}$
else accept with probability a if rejected: $X^{(t+1)}=X^{(t)}$

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/Tu
October 2005

Outline

- Inference and Estimation via Sampling
- Ways to Sample
- Markov Chains
- Metropolis-Hastings
- Metropolis \& Gibbs

The Metropolis Algorithm

When q is symmetric, i.e., $\mathrm{q}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\mathrm{q}\left(\mathrm{x}^{\prime}, \mathrm{x}\right)$:
0 . Start with $\mathrm{x}^{(0)}$, then iterate:

1. propose x^{\prime} from $\mathrm{q}\left(\mathrm{x}^{(\mathrm{t}}, \mathrm{x}^{\prime}\right)$
2. calculate ratio

$$
a=\frac{\pi\left(x^{\prime}\right)}{\pi\left(x^{(t)}\right)}
$$

3. if $\mathrm{a}>1$ accept $\mathrm{x}^{(t+1)}=\mathrm{x}^{\prime}$
else accept with probability a
if rejected: $\mathrm{x}^{(t+1)}=\mathrm{x}^{(t)}$

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu

Gibbs Sampling

- Example: target $\pi\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
- Algorithm:
- alternate between x_{1} and x_{2}
- 1. sample from $x_{1} \sim P\left(x_{1} \mid x_{2}\right)$
- 2. sample from $x_{2} \sim P\left(x_{2} \mid x_{1}\right)$
- After a while: samples from target density!

- Sampler equivalent of "Gauss-

Seidel" iterations

ICCV05 Tutorial: MCMC for Vision.
Zhu / Dellaert/ Tu

Gibbs = Special Case of MH

- Acceptance ratio is always 1

$$
a=\frac{\pi\left(x^{\prime}\right) q_{i}\left(x^{\prime}, x^{(t)}\right)}{\pi\left(x^{(t)}\right) q_{i}\left(x^{(t)}, x^{\prime}\right)}
$$

$$
=\frac{\pi\left(x^{\prime}\right) \pi\left(x_{i}^{(t)} \mid x_{\sim i}^{(t)}\right) \delta\left(x_{\sim i}^{(t)}, x_{\sim i}^{\prime}\right)}{\pi\left(x^{(t)}\right) \pi\left(x_{i}^{\prime} \mid x_{\sim i}^{(t)}\right) \delta\left(x_{\sim i}^{(t)}, x_{\sim i}^{\prime}\right)}
$$

$$
=\frac{\pi\left(x^{\prime}\right) \pi\left(x^{(t)}\right) \pi\left(x_{\sim i}^{(t)}\right) \delta\left(x_{\sim i}^{(t)}, x_{\sim i}^{\prime}\right)}{\pi\left(x^{(t)}\right) \pi\left(x^{\prime}\right) \pi\left(x_{\sim i}^{(t)}\right) \delta\left(x_{\sim i}^{(t)}, x_{\sim i}^{\prime}\right)}=1
$$

ICCV05 Tutorial: MCMC for Vision.

Sampling from the Prior

Weak Affinity to Neighbors
Strong Affinity to Neighbors

ICCV05 Tutorial: MCMC for Vision.
Zhu / Dellaert/Tu

Gibbs Sampling in a Markov Random Field

Sampling MRF Posterior

- $\mathrm{P}(\mathrm{x} \mid \mathrm{N})$
- pulled towards 0 if data close to 0
- pushed towards 1 if data close to 1
- and influence of prior...

| ICCV05 Tutorial: MCMC for Vision. \quad Zhu / Dellaert/ Tu | October | 2005 |
| :--- | :--- | :--- | :--- |

Samples from Posterior

Forgiving Prior

Stricter Prior

Application: Edge Classification

Given vanishing points of a scene, classify each pixel according to vanishing direction
CCV05 Tutorial: MCMC for Vision.

Relation to Belief Propagation

- In poly-trees: BP is exact
- In MRFs: BP is a variational approximation
- Computation is very similar to Gibbs
- Difference:
- BP Can be faster in yielding a good estimate
- BP exactly calculates the wrong thing
- MCMC might take longer to converge
- MCMC approximately calculates the right thing

| ICCV05 Tutorial: MCMC for Vision. \quad Zhu / Dellaert/Tu | October | 2005 |
| :--- | :--- | :--- | :--- |

