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Lect 3:  A Variety of Tricks for MCMC Design 

1. Hit-and-run, random ray, 
2. Generalized Gibbs sampler.
3. Simulated tempering
4. Data augmentation 
5. Slice sampling
6. Cluster sampling
7. Metropolized Gibbs Sampler

Thank Jun Liu (Harvard) for sharing some slides in this lecture.

Lect 2 introduces 2 general designs: Gibbs sampler and Metropolis-Hastings.  This 
lecture discusses a variety of tricks for designs using Gibbs and Metropolis.
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Gibbs sampler revisit

Principle: Each move keeps π(x) invariant.

This is ensured by the conditional distribution of the 
possible moves along dimension i at current x.

Goal: sampling a joint probability

Sampling in each dimension according to a conditional probability
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A problem with Gibbs sampler

x1

x2

For a probability p(x1,x2 ) whose probability 
mass is focused on a 1D line segment, 
sampling the two dimensional iteratively
is obviously inefficient. i.e. the chain is
“jagging”. 

This is because the two variables are
tightly coupled. It is best if we move 
along the direction of the line.
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A problem with Gibbs sampler (cont.)

In general, problems arise when the probability is defined in a much lower dimensional
manifold in a d-dimensional space.  The Markov chain is not allowed to move in the
normal directions (off the manifold) but the tangent directions.

As we know, Gibbs distributions are derived from constraints on the variables X, and thus
they are defined in some implicit manifold (like the Julesz ensemble in lecture 1)     

These two examples show that the best way towards
fast computation is to find the intrinsic dimensions and
hidden (auxiliary) variables.  

Sampling in low dimensional manifolds
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A problem with Gibbs sampler (cont.)

1/2 1/2

For single site Gibbs sampler, the boundary spins are flipped with a p=½ 
probability. Flipping a string of length n will need on average 

t >= 1/pn =2n steps!             
This is exponential waiting time.

Coupling in Markov random fields, e.g. the Ising / Potts model
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It selects a direction at random and shoot like a sniper.

Suppose the current state is

(1) Select a direction or axis

(2) Sample along the axis.

(3) Update

The problem is: how do we select the direction?
The sampling along the axis will be a continuous Gibbs and implemented by
Multi-Try Metropolis.

Design ex. 1:   Hit-and-Run
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Design ex. 2:  Generalized Gibbs Sampler

Let Γ={ γ } be a locally compact group, each element is a possible move

In fact, one may not have to move in straight lines. In more general cases,
one may use a group of transformations for the possible moves, as long as
the moves preserve the invariant probability. 

A Theorem (Liu and Wu, 1999, see ref. Jun Liu Ch. 6 )

Where H(dγ) be its left-invariant Haar measure

If the element is chosen by

Then the new state follows the invariant probability
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Design ex. 3:  Generalized Hit-and-Run

Conceptually it helps to generalize the hit-and-run idea to an arbitrary partition of the
space, especially in finite state space.   This is a concept by Persi Diaconis 2000.

Suppose a Markov chain consists of many sub-chains, and the transition probability
is a linear sum,

If each sub-kernel has the same invariant probability,

Then the whole Markov chain follows  
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Design ex. 3:  Generalized Hit-and-Run

e.g. Ki be a probability within set Ωi proportional to π(x).

x is connected to a set 

We denote the set of states connected to x by the i-th type moves by
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Key problems

1. How do we decide the sampling
dimensions, directions, group transforms, and sets Ωi(x)

in a systematic and principled way?

2. How do we schedule the visiting order governed by p(i)?
i.e. choosing the moving directions, groups, and sets
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Sampling with auxiliary variables

A systematic way is to introduce auxiliary random variables:

T --- temperature :  Simulated tempering, 
(Narinari and Parisi, 92, Geyer and Thompson, 95 )

s --- scale:               Multi-grid sampling,
(Goodman and Sokal 88, Liu et al 94 )

w --- weight:            Dynamic weighting,
(Liang and Wong, 1996 )

b --- bond                Clustering sampling, Swendsen-Wang
(Swendsen-Wang, 87, Edward and Sokal, 1988)

u --- energy level     Slice sampling
(Edwards and Sokal, 88 …)

Examples fpr auxiliary variables y:
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Let the target probability be 

Augment a variable I in {1,2,…,L} for L levels of temperature

Sampling a joint probability, and keep the X’s with I=1

Design ex. 4:  Simulated Tempering

Intuition: the sampler moves more freely in high temperature.
But it is very difficult to cross between different temperature levels. 
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Design ex. 5:  Parallel Simulated Tempering
Suppose we run Markov chains at L levels in parallel

Define a joint probability for all chains

Propose to permute two chains:

Accept with Metropolis-Hastings
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Design ex. 6: Slice Sampling
We use a 1D probability π(x) as an example. We introduce an auxiliary variable u in [0,1]
for the level of probability. Thus sampling π(x) is equivalent to sampling uniformly from
the shading area in the [x,u] space.  

It proceeds as a 2-step Gibbs sampler
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Design ex. 6: Slice Sampling
The first step is easy, but the second step is often intractable in high dimensional space.

is an area (multiple connected components) bounded 
by the level set 
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Design ex. 7: Data Augmentation

The slice sampling suggests two general conditions for auxiliary variables 

1. The marginal probability on x is the invariant probability

2. The two conditional probabilities have simple forms and 
are easy to sample
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Design ex. 7: Data Augmentation

Intuitions: 
Very often the probability is focused on separated modes (areas), hopping

between these modes are hard, for Markov chains usually move locally.
Good auxiliary variables will be like step stones ... 

(1) It helps selecting moving directions/groups/sets (in generalized hit-and-run).
(2)   It enlarges the search scopes (from a flashlight to a RADAR). 
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Design ex. 8: Cluster sampling and SW

1/2 1/2

Swedsen-Wang (1987) is a smart idea for sampling the Potts/Ising
model by clustering. It introduces binary (Bernoulli) variables on 
random fields, so that it can flips a patch/cluster at a time. 
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Design ex. 8: Cluster sampling and SW

Each edge in the lattice e=<s,t> is associated with a variable ust
which follows a Bernoulli probability B(ρ1(xs=xt))   with ρ= 1-e-β.  

V0

state A state B

V0

V1

V2

V1

V2
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Interpreting SW by data augmentation

One useful interpretation of SW is proposed by Edward and Sokal (1988) using the concept of
data augmentation (Tanner and Wang 1987).

Augment the probability with auxiliary variables on the edges of the adjacency graph  

The joint probability is

It is not hard to prove that its marginal is the Potts model
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Interpreting SW by data augmentation

1. Flipping the edges by Bernoulli probability,

CP(U) is a hard constraint that vertices in each connected component 
according to U has the same color. So we flip the ccp in the quotient space.

2. Flipping a connected component (CCP) by uniform probability,

Its two conditional probabilities are extremely simple and easy to sample from
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Some theoretical results about SW

1. (Gore and Jerrum 97) constructed a “worst case”
SW does not mix rapidly if G is a complete graph with n>2, and a certain β.

2.  (Cooper and Frieze 99) had positive results
If G is a tree, SW mixing time is O(|G|) for any b.
If G has constant connectivity O(1), the SW has polynomial mixing time for ρ<=ρ0.   

3. (Huber 2002) proposed a method for exact sampling using bounding chain technique
for small lattice with very low and very high temperature.

To engineers, the real limit of SW is that it is only valid for Ising/Potts models.
(A tiger contained in Potts’ cage!)

Furthermore, it makes no use of the data (external fields) in forming clusters.
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Design ex. 9:  Metropolized Gibbs sampler

x is connected to a set 

We denote the set of states connected to x by the i-th type moves by

Let’s revisit the general idea of hit and run.
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Design ex. 9:  Metropolized Gibbs sampler

x

(x)1rΩ

(x)2Ω

(x)1ΩL

We know there are two general designs: Gibbs and Metropolis.
(1) Gibbs design,

we sample a probability in each set 

(2). Metropolis design,
It is no long symmetric,
To observe the detailed balance, we need a condition

The sub-kernels are designed in pairs 

In this way, the move is symmetric
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Design ex. 9:  Metropolized Gibbs sampler

Proposal according to the conditional probabilities --- like a Gibbs sampler
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Discussion

We discussed some design principles and methods.

(1) There is no universal design that is applicable to all problems.

One must analyze  the structures of the state space, and
the target probability.

(2) In computer vision, it is unlikely to design a Markov chain a priori 
that works well on all images.

One must look at the data and the Markov chain must by driven
by the data. 


