Trans-dimensional MCMC

Frank Dellaert
$\begin{array}{lll}\text { ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/Tu } & \text { October } & 2005\end{array}$

Outline

- Model Selection
- Reversible Jump MCMC
- Regression Example
- Rao-Blackwellized Sampling
- Polygonal Random Fields

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/Tu	October	2005

References

- Peter Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 1995
- Peter Green, Trans-dimensional Markov chain Monte Carlo, in "Highly Structured Stochastic Systems", 2003
- David Hastie, Ph.D. Thesis, 2005
- Paskin \& Thrun, Robotic Mapping with Polygonal Random Fields, UAI 2005

| ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu | October 2005 |
| :--- | :--- | :--- | :--- |

continuous parameters

- What if there are competing models ?
$p\left(x_{1} \mid z\right), x_{1} \in R^{3}$
$p\left(x_{2} \mid z\right), x_{2} \in R^{5}$
$p\left(x_{3} \mid z\right), x_{3} \in R^{7}$

| ICCV05 Tutorial: MCMC for Vision. \quad Zhu / Dellaert/ Tu | October | 2005 |
| :--- | :--- | :--- | :--- |

Ex.2: 3D Curve Fitting

- How many control points?
- How many sharp corners ?

Union Space

- Model indicator k
- Parameter vector $\theta_{k} \in R^{n_{k}}$
- State space $=$ union space $X=\bigcup_{k \in K}\left(\{k\} \times R^{n_{k}}\right)$

Outline

- Model Selection
- Reversible Jump MCMC
- Regression Example
- Rao-Blackwellized Sampling
- Polygonal Random Fields

ICCV05 Tutorial: MCMC for Vision.	Zhu / Dellaert/ Tu	October	2005

Trans-Dimensional MCMC

- set up Markov chain in union space X
- allow trans-dimensional jumps

Explicit Jump Random Variables

- Re-state MCMC to avoid measure theory
- Explicit jump random variable u
- Proposal density $q\left(x, x^{\prime}\right)$ replaced by
- draw $u \sim g(u)$
- calculate $x^{\prime}=h(x, u)$

ICCV05 Tutorial: MCMC for Vision.

A New Proposal Ratio

Example (single dimension)

- Random walk on $\mathrm{SO}(2)$
$q\left(x, x^{\prime}\right)=N\left(x^{\prime} ; x, \sigma^{2}\right)$
\Rightarrow
$u \sim N\left(0, \sigma^{2}\right)$
$x^{\prime}=h(x, u)=x+u$

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu
October 2005

Jacobians

- Jacobian arises from change of variable
- Review from probability 101 :
$x \sim g(x)$
$y=t(x)$
$f(y)=\left|\frac{\partial t(x)}{\partial x}\right|^{-1} g\left(t^{-1}(y)\right)=\left|\frac{\partial x}{\partial y}\right| g(x)$
Simple example:

$$
\begin{aligned}
& x \sim g(x) \\
& y=t(x)=x / 2 \\
& f(y)=\left|\frac{\partial t(x)}{\partial x}\right|^{-1} \xrightarrow{g\left(t^{-1}(y)\right)=2 g(2 y)}
\end{aligned}
$$

ICCV05 Tutorial: MCMC for Vision.
Zhu / Dellaer / Tu

Detailed Balance in RJMCMC

- Change of variables as differential equality $f(y) d y=g(x) d x$ and $d x=\left|\frac{\partial x}{\partial y}\right| d y$ hence : $f(y) d y=\left|\frac{\partial x}{\partial y}\right| g(x) d y$

Shows up in detailed balance equation:

$$
\alpha\left(x, x^{\prime}\right) \pi(x) g(u) d x d u=\alpha\left(x^{\prime}, x\right) g(u) \pi\left(x^{\prime}\right) g\left(u^{\prime}\right) d x^{\prime} d u^{\prime}
$$

$d x^{\prime} d u^{\prime}=\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right| d x d u$
$\alpha\left(x, x^{\prime}\right)=\min \left\{1, \frac{\pi\left(x^{\prime}\right) g\left(u^{\prime}\right)}{\pi(x) g(u)}\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|\right\}$
$\begin{array}{llll}\text { ICCV05 Tutorial: MCMC for Vision. } \quad \text { Zhu / Dellaert/ Tu } & \text { October } & 2005\end{array}$

A Constructive MCMC Recipe (Green)

- (Conventional) MCMC with jump variables:
- draw u~g(u)
- calculate proposal $\mathrm{x}^{\prime}=\mathrm{h}(\mathrm{x}, \mathrm{u})$
- calculate reverse jump variable u' s.t. $\mathrm{x}=\mathrm{h}^{\prime}{ }^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{u}^{\prime}\right)$
- calculate acceptance ratio:

$$
a=\min \left\{1, \frac{\pi\left(x^{\prime}\right) g\left(u^{\prime}\right)}{\pi(x) g(u)}\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|\right\}
$$

ICCV05 Tutorial: MCMC for Vision. \quad Zhu / Dellaert / Tu
October 2005

Reversible -> Diffeomorphism

- We need to calculate both x^{\prime} and u^{\prime} :

$$
\left(x^{\prime}, u^{\prime}\right)=t(x, u)
$$

- Required that t is a diffeomorphism:
- invertible
- differentiable
- Jacobian $=$

$$
\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|=\left|\frac{\partial t(x, u)}{\partial(x, u)}\right|=\left|\begin{array}{ll}
\frac{\partial t_{x^{\prime}}(x, u)}{\partial x} & \frac{\partial t_{x^{\prime}}(x, u)}{\partial u} \\
\frac{\partial t_{u^{\prime}}(x, u)}{\partial x} & \frac{\partial t_{u^{\prime}}(x, u)}{\partial u}
\end{array}\right|
$$

$$
\text { ICCV05 Tutorial: MCMC for Vision. } \quad \text { Zhu / Dellaert / Tu } \quad \text { October } 2005
$$

Reversible-Jump MCMC

- Story holds if x and x ’ have different dimensions ! $a=\frac{\pi\left(x^{\prime}\right) g\left(u^{\prime}\right)}{\pi(x) g(u)}\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|$

Move Types
- In each space, proposal is mixture of different move types
- Each move has probability $\mathrm{j}_{\mathrm{m}}(\mathrm{x})$

Dimension Matching Constraint

- Requirement that ($\left.\mathrm{x}^{\prime}, \mathrm{u}^{\prime}\right)=\mathrm{t}(\mathrm{x}, \mathrm{u})$
remains a diffeomorphism
$\Rightarrow \operatorname{dim}\left(\mathrm{x}^{\prime}\right)+\operatorname{dim}\left(\mathrm{u}^{\prime}\right)=\operatorname{dim}(\mathrm{x})+\operatorname{dim}(\mathrm{u})$

Outline

- Model Selection
- Reversible Jump MCMC
- Regression Example
- Rao-Blackwellized Sampling
- Polygonal Random Fields

Regression Example

Regression Example

Outline

[^0]

Rao-Blackwell Theorem

- Variance of sample approximation is reduced when part of state space is integrated out

${ }^{\circ}$ Control point ${ }^{4} 0^{\circ}$

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu
October 2005

Outline

- Model Selection
- Reversible Jump MCMC
- Regression Example
- Rao-Blackwellized Sampling
- Polygonal Random Fields
Experiments (2)
Experiments (2)

- From field of spatial statistics
- Space $=$ colorings of R^{2} in window D
- Uses measure theory to build a (nonRJMCMC) sampler that satisfies detailed balance

[^1]2005

[^0]: - Model Selection
 - Reversible Jump MCMC
 - Regression Example
 - Rao-Blackwellized Sampling
 - Polygonal Random Fields

 | - Polygonal Random Fields | | | |
 | :--- | :--- | :--- | :--- |
 | ICCV05 Tutorial: MCMC for Vision. | Zhu / Dellaert/Tu | October | 2005 |

[^1]:

