Lect 6: Graph Partition by Swendsen-Wang Cuts Topics

1. Graph partition and labeling
2. Clustering with bottom-up edge probabilities
3. Moving in the partition space

Reversible and detailed balance
4. Swendsen-Wang Cuts
5. Examples
segmentation, stereo, and motion etc.

Graph partition

A graph $\mathrm{G}=<\mathrm{V}, \mathrm{E}>$ is partitioned into an unknown number of sub-graphs

$$
X=\left(V_{1}, V_{2}, \ldots, V_{L}\right), \quad V=\cup_{i=1}^{L} V_{i}, \quad V_{i} \cap V_{j}=\emptyset, i \neq j
$$

Each subgraph is often assigned a lable or color, thus the partition problem is augmented into a graph coloring/labeling problem.
E.g. image segmentation (label), stereo (disparity), motion (velocity), ...

Traversing the partition space

Let Ω_{L} be the partition space of all possible L-way partitions of V

$$
\Omega_{L}=\left\{X=\left(V_{1}, \ldots, V_{L}\right)\right\}
$$

The partition space is denoted by

$$
\Omega=\cup_{\mathrm{L}=1}^{|V|} \Omega_{\mathrm{L}}
$$

How do we design a Markov chain to traverse the partition space?
This is a challenging question facing many tasks,
e.g. how can the split-merge operator be made reversible in image segmentation?

So what? You need to have algorithms that is capable of global optimality independent of initial solutions !!

An example of segmentation

For speed, one can group adjacent pixels of constant intensity into super-pixels to reduce the graph. (This step has risk, more proper treatment should be using multi-level Swendsen-Wang cut, which can freeze and open the atomic regions.)

image segmentation result

graph partition (labeling)

input image

over-segmentation with atomic regions adjacency graph

An example of adjacency graph

Each node could be a pixel, atomic region (super-pixel), feature points,...

Moves in the partition space

The key issues

1. How do we select a subset of nodes V_{0} to flip?
2. How do we maintaining reversibility?
3. How do we ensure detailed balance?

What is the probabilities (ratio) for selecting V_{0} at two reversible states?

Swendsen-Wang revisited

SW (1987) uses data augmentation and selects Vo by Bernoulli bonds.

Each edge is augmented a bond variable $u_{s t} \sim \operatorname{Bernoulli}\left(\rho 1\left(x_{s}=x_{\mathrm{t}}\right)\right), \rho=1-\mathrm{e}^{-\beta}$.

Limitations of SW

Although it works well in Ising/Potts models, SW has the following problems that need to be resolved for many vision applications.

1. It is limited to Ising / Potts models.
2. The number of labels L is fixed and known.
3. The forming of clusters is not informed by data, thus it slows down in the presence of an external field (data).

From SW to SW-cut

SW cuts (Barbu and Zhu, ICCV 03, CVPR04) extended SW in three aspects.

1. Generalize SW to arbitrary probabilities on graphs with variable L.

It can also be made into a generalized Gibbs sampler which flips a CCP at each step with simple weights on the conditional probabilities.
2. Using discriminative models (data-driven) for the edge probabilities

The edge probability approaches the marginal posterior probability for how likely two sites s and t belong to the same color (object surface)
3. Hierarchical coloring in a multi-resolution pyramid representation.

Step 1. Computing discriminative edge probability

The edge probability is decided by local features.

Histogram H_{i}

$q_{s t}=e^{-K L\left(H_{i}, H_{j}\right) / T}$

It approaches the marginal posterior as the number of features increase.
$q_{s t}=q\left(x_{s}=x_{t} \mid F_{s}, F_{t}\right) \rightarrow p\left(x_{s}=x_{t} \mid I\right)$
$\mathrm{p}\left(\mathrm{x}_{\mathrm{s}}=\mathrm{x}_{\mathrm{t}} \mid \mathrm{I}\right)$ is a marginal probability of $\pi(\mathrm{X}$
I) 1. Konishi et al 01, Ren et al 04
2. Adaboost, Shapire 00

Step 2. Computing SW-Cuts

Definition: A Swendsen-Wang cut is the set of edges between a cluster (CCP) and other sites of the same color.

$$
\operatorname{Cut}\left(V_{0}, V_{1}\right)=\left\{\langle s, t\rangle: s \in V_{0}, t \in V_{1}, C_{s}=C_{t}\right\}
$$

This is the set of dashed edges marked with crosses.
They must be turned off for V_{0} being a $C C P$.

Probability ratio for a pair of SW-cuts

State A

Theorem. The probability ratio for selecting $\mathrm{CCP} \mathrm{V}_{0}$ at states A and B is

$$
\frac{q\left(V_{o} \mid B\right)}{q\left(V_{o} \mid A\right)}=\frac{\prod_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{2}\right)}\left(1-q_{s t}\right)}{\prod_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{1}\right)}\left(1-q_{s t}\right)}
$$

(Barbu and Zhu, 2003)

Outline of the proof

We compute the proposal probability ratio:

$$
\frac{q(B \rightarrow A)}{q(A \rightarrow B)}=\frac{\sum_{C P \in \Omega_{C P}(B)} q\left(l \mid V_{o}, B\right) q\left(V_{o} \mid C P\right) q(C P \mid B)}{\sum_{C P \in \Omega_{C P}(A)} q\left(l^{\prime} \mid V_{o}, A\right) q\left(V_{o} \mid C P\right) q(C P \mid A)}
$$

All configurations of edges that take state A to B must have all edges of the cut $\operatorname{Cut}\left(V_{0}, V_{1}-V_{0}\right)$ turned off.

$$
q(C P \mid A)=\prod_{e \in C\left(V_{o}, V_{i}-V_{0}\right)}\left(1-q_{e}\right) \prod_{e \in E_{o f} /(A, C P)-C\left(V_{o}, V_{i}-V_{0}\right)}\left(1-q_{e}\right) \prod_{e \in E_{o n}(A, C P)} q_{e}
$$

Outline of the proof

Cancellation of the sums occurs because of the symmetry between states A and B : - Any $C P$ that takes state A to B is also a $C P$ that takes state B to A

$$
\Omega_{C P}(A)=\Omega_{C P}(B)
$$

- Any configuration of "on" edges in state A appears in state B and vice versa

$$
E_{o n}(A, C P)=E_{o n}(B, C P)
$$

- Any configuration of "off" edges in state A appears in state B

$\frac{E_{o f f}(A, C P)-C\left(V_{o}, V_{l}-V_{o}\right)=E_{o f f}(B, C P)-C\left(V_{o}, V_{l^{\prime}}-V_{o}\right)}{}$		
ICCV05 Tutorial: MCMC for Vision.	Zhu / Dellaert $/ \mathrm{Tu}$	October 2005

Step 3. The Metropolis-Hasting Step

State B
Theorem. The acceptance probability for flipping V_{0} is

$$
\begin{aligned}
\alpha(A \rightarrow B) & =\min \left(1, \frac{q(B \rightarrow A)}{q(A \rightarrow B)} \cdot \frac{\pi(B)}{\pi(A)}\right) \\
& =\min \left(1, \frac{\Pi_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{2}\right)}\left(1-q_{s t}\right)}{\prod_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{1}\right)}\left(1-q_{s t}\right)} \cdot \frac{q\left(\ell=1 \mid V_{o}, B\right)}{q\left(\ell=2 \mid V_{o}, A\right)} \cdot \frac{\pi(B)}{\pi(A)}\right)
\end{aligned}
$$

results in an ergodic and reversible Markov Chain.

Same conclusion when multiple paths exist

State C

The Swendsen-Wang Cuts algorithm

The initial graph G_{0}

Swendsen-Wang Cuts: SWC

Input: $G_{0}=<V, E_{0}>$, discriminative probabilities $q_{e}, e \in E_{0}$, and generative posterior probability $\mathrm{p}(\mathrm{W} \mid \mathrm{I})$.
Output: Samples $\mathrm{X} \sim \mathrm{p}(\mathrm{X} \mid \mathrm{I})$.

1. Initialize a graph partition $\pi: G=\cup_{l=1}^{n} G_{l}$
2. Repeat, for current state $A=\pi$
3. Repeat for each subgraph $\mathrm{G}_{\mathrm{l}}=<\mathrm{V}_{1}, \mathrm{E}_{\mathrm{l}}>, \mathrm{l}=1,2, \ldots, \mathrm{n}$ in A
4. For $\mathrm{e} \in \mathrm{E}_{1}$ turn $\mathrm{e}=$ "on" with probability q_{e}.
5. Partition G_{1} into n_{1} connected components:
$\mathrm{g}_{\mathrm{li}}=<\mathrm{V}_{\mathrm{li}}, \mathrm{E}_{\mathrm{li}}>, \mathrm{i}=1, \ldots, \mathrm{n}_{1}$
6. Collect all the connected components in $\mathrm{CP}=\left\{\mathrm{V}_{\mathrm{li}}: \mathrm{l}=1, \ldots, \mathrm{n}, \mathrm{i}=1, \ldots, \mathrm{n}_{1}\right\}$.
7. Select a connected component $V_{0} \in C P$ at random
8. Propose to reassign V_{0} to a subgraph G_{l},
l^{\prime} follows a probability $q\left(l^{\prime} \mid \mathrm{V}_{0}, \mathrm{~A}\right)$
9. Accept the move with probability $\alpha(\mathrm{A} \rightarrow \mathrm{B})$.

State B
Zhu / Dellaert / Tu
October 2005

Acceptance probability can be made always 1

$$
\alpha(A \rightarrow B)=\min \left(1, \frac{\prod_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{2}\right)}\left(1-q_{s t}\right)}{\prod_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{1}\right)}\left(1-q_{s t}\right)} \cdot \frac{q\left(\ell=1 \mid V_{o}, B\right)}{q\left(\ell=2 \mid V_{o}, A\right)} \cdot \frac{\pi(B)}{\pi(A)}\right)=1
$$

If we select the label probability as

$$
\begin{aligned}
& q\left(\ell=1 \mid V_{o}, B\right)=\Pi_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{1}\right)}\left(1-q_{s t}\right) \pi(A) \\
& q\left(\ell=2 \mid V_{o}, A\right)=\Pi_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{2}\right)}\left(1-q_{s t}\right) \pi(B)
\end{aligned}
$$

Remark: zero rejection rate may not necessarily be an optimal design.
ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005

Another generalized Gibbs sampler

We denote the probabilities on the SW-cuts $\operatorname{Cut}\left(\mathrm{V}_{0}, \mathrm{~V}_{\mathrm{k}}\right)$ by weights

$$
\begin{aligned}
& \omega_{k}=\prod_{<s, t>\in \operatorname{Cut}\left(V_{o}, V_{k}\right)}\left(1-q_{s t}\right), \quad k=1,2, \ldots, L \\
& \omega_{0}=1
\end{aligned}
$$

Flip the label of a CCP according to a condition probability weighted by the SW-weights

$$
q\left(\ell=k \mid V_{o}\right)=\omega_{k} \cdot \pi\left(\ell\left(V_{o}\right)=k\right), \quad k=0,1,2, \ldots, L
$$

ICCV05 Tutorial: MCMC for Vision.

SW comes as a special case

Consider the reversible moves between states A and B by Metroplis-Hastings:
the proposal probability ratio is:

$$
\frac{q(A \rightarrow B)}{q(B \rightarrow A)}=\frac{\left(1-q_{o}\right)^{\left|\operatorname{Cut}\left(V_{0}, V_{1}\right)\right|}}{\left(1-q_{o}\right)^{\left|\operatorname{Cut}\left(V_{0}, V_{2}\right)\right|}}=\left(1-q_{o}\right)^{\left|\operatorname{Cut}\left(V_{0}, V_{1}\right)\right|-\left|\operatorname{Cut}\left(V_{0}, V_{2}\right)\right|}
$$

the probability ratio of the two states is:

$$
\frac{\pi(A)}{\pi(B)}=\frac{\exp ^{-\beta \cdot\left|\operatorname{Cut}\left(V_{0}, V_{2}\right)\right|}}{\exp ^{-\beta \cdot\left|\operatorname{Cut}\left(V_{0}, V_{1}\right)\right|}}=\exp ^{\beta \cdot\left(\left|\operatorname{Cut}\left(V_{0}, V_{1}\right)\right|-\left|\operatorname{Cut}\left(V_{0}, V_{2}\right)\right|\right)}
$$

$$
\alpha(A \rightarrow B)=\min \left(1, \frac{q(B \rightarrow A)}{q(A \rightarrow B)} \cdot \frac{\pi(B)}{\pi(A)}\right)=\left(\frac{e^{-\beta}}{1-q_{o}}\right)^{\left|\operatorname{Cut}\left(V_{o}, V_{1}\right)\right|-\left|\operatorname{Cut}\left(V_{o}, V_{2}\right)\right|}
$$

If we choose

$$
q_{o}=1-e^{-\beta}
$$

Then the acceptance probability is always 1.

Comparison with Gibbs sampler in CPU time

Convergence comparison of SWC-1 and the Gibbs sampler on the cheetah image, starting from a random state or from the state where all nodes have label 0 . Right - zoom in view of the first 20 seconds.

Convergence comparison: in seconds

Another example

Examples of segmentation

a. input image

b. over-segmentation with atomic regions

c. segmentation result

Examples on Stereo Reconstruction

Left image

Ground truth

Segmentation result

Hierarchical partition and segmentation

Motion segmentation examples

Input sequence

Input sequence

Image Segmentation

Image Segmentation

Motion Segmentation

Motion Segmentation

ICCV05 Tutorial: MCMC for Vision.
Zhu / Dellaert / Tu
October

Summary

- Generally applicable - allows usage of complex models beyond the scope of the specialized algorithms
- Computationally efficient - performance comparable with the specialized algorithms
- Reversible and ergodic - theoretically guaranteed to eventually find the global optimum

