Geometric
Image Manipulation

Lecture #9
February 11, 2002

Image Manipulation:
Context

= Now we have the background in sampling (&
Fourier analysis) to consider simple image
transformations.

= There are always to components:
= Geometric finding which point in a source image
correspondes to each point in the target imagei®a-
versg
= Photometric computing the value of the target pixel

© Bruce A. Draper

$ Image Manipulation
= Step 1: Filter the source image, based on the

Nyquist rate of the target
= Step 2: Calculate geometric transformation
= Step 3: Interpolate filtered values

= In general, the geometric mapping will not map integef

position onto integer position
= Three methods:
= Source- Target
= Target— Source
= 2 Pass (Source. Target)

© Bruce A. Draper

= The simplest set of transformations are translati
rotation, and scale

= These are called the (6 DOF) affine

transformations
= In matrix form these are:
u [« OFF(T FF:FOS‘D —sindﬁx]’
VS T I b i
scale rotation

and...

© Bruce A. Draper

Image

Translation
(note the 2Dhomogeneous coordinates)

u [1 0 tI[x
v|=f0 1 t |y
1 0 0 17y

© Bruce A. Draper

(6 DOF) Affine
Transformations

= Of course, these can be combined into one geng

matrix:
u [a b c[[X
vi=rd e f |y
1 0 0 1y

= What else can you do with this matrix? (hint: two
more transformation types)

= How can you specify this matrix?

© Bruce A. Draper

=.

Cc

Specifying Affine

= There are six unknowns in the matrix (a through f)

= |If you specify one point in the source image and a
corresponding point in the target image, that yields
two equations:

u =ax +by +c
v, =dx +ey + f

= So providing three point-to-point correspondences
specifies an affine matrix

© Bruce A. Draper

Solving Affine
Transformations

These linear equations can be easily solved:
= WLOG, assume %y;=0 = ax +by, +u,
= theny=candy=f U =ax, +by, +u,

U~ —by,
XZ
%(u, ~u, ~by,)
X,

Py o, - B)

= SO! a=

=~y —by,

—u-%(u -
b)) mu)
XYy XY, 7Y,
X
© Bruce A. Draper

$ Solving Affine (cont.)

= This can be substituted in to solve for a
= The same process with y's solves for d,e,f
= About the WLOG:

= It was true because you can translate the original
coordinate system by (-x1, gy

= So what do you do to compensate?

= Alternatively, set up a system of linear equationg
and solve...

© Bruce A. Draper

Perspective
Transformations

= We can simulate more than just affine
transformations

= We can do any perspective transformation of a
planeto a plane

= Therefore we can model an image as a plane in
space, and project it onto any other image.

= How does this differ from the perspective projection
pipeline in CS410?

© Bruce A. Draper

o Perspective Matrix

ul [a b c[[x
Vii=rd e f|y
g h 11

:U' :Vl
u=Yg V=g

= Why does element [3,3] = 1?

= How many points are needed to specify this
matrix?

© Bruce A. Draper

= Four corresponding points produce eight
equations, eight unknowns --- but we can’t
observer

u :U/ :7a)g+byi+c
L /W gx +hy +1

_v, / _dxtey+f

L /W gx +hy +1

© Bruce A. Draper

g Solving (cont)

= Multiply to get rid of the fraction...
u(gx +hy +1)=ax +by, +c
vi(gx +hy +1)=dx +ey + f
= Now, remember that the u’s,v's,x’s & y's are
known; group the unknown terms
u; =ax +by +c-gxu, —hyu,
v, =dx +ey +f —gxv, —hyy,

© Bruce A. Draper

= And express the result as a system of linear

equations

[wl % v 1 0 0 0 -xu -yulfal
| I 0 0 0 x ¥y 1 -xv -y :b
lu, | 1% ¥, 1 0 0 0 -xu, -yu|cC
:Vz - : 0 0 0% v 1 -X%% -y :d
Fus | t% Y 1.0 0 0 -xu, -y, e
[Va| [0 0 0 % v 1 =%xv -V i f
FUg| %, Y, 1.0 0 0 -xu, -vyu|g

vl TO 0 0 % vy, 1 =-xv, —yV[lh

© Bruce A. Draper

g Solving (V)

= Finally, invert the constant matrix and solve

:X1 y 1.0 0 0 -xu - y1u1’—71:u1" [al
[0 0 0 x v 1 -xv -yv [:b
X, ¥, 1 0 0 0 -xu, —-yu| lu| [C
: 00 0 X% v 1 -xv -y V2 - :d
X, Y3 1 0 0 0 -xu, -yu,| tu,| e
: 0 0 0 X Y3 1 - XV; T YaVs :Va : f
X Ya 10 0 0 - XUy — YUy | U, rd
[0 0 O %, vy, 1 =xv, =VyVv[[Vl [h

© Bruce A. Draper

Intuitions for
Perspective Image Transforms

= What does the following matrix do?

V2 -2 d
J2o 2 0
0o 0 1

© Bruce A. Draper

$ Matrix Decomposition

)
V2 -J2 o [2 0 o «/15 «/15
V2 V2 o|=f0 2 of——= —— o0
0 0 1f [0 0 1 *? *? 1
i Scale
original by 2 Rotation
by 45

= Note that such decompositions are:
= not unique (why?)
= difficult to intuit

© Bruce A. Draper

Intuitions...

This is the result of applying the matrix above...

N

« Orientation of rotations is from positive X toward positive Y

« All orientations are about the origin!
© Bruce A. Draper

= What will the following matrix do?

1 0 O
0 0 1
1 -1 1

© Bruce A. Draper

= Part of what your seeing is a scale effect

= positive terms in the bottom row create larger w values,

and therefore smaller u,v values

= Something much weirder is also going on:
= what happens when y = x+1?
= How do you interpret this geometrically?
= Isn’t the perspective transform linear?

= So how do you select transform matrices?

© Bruce A. Draper

= Remember how to build a transformation from
four point correspondences....

[ul [x v 1 0 0 0 -xu -yuflal
™M [0 0 0 x v 1 -xv -y [b
lu, | X, v, 1 0 0 0 -xu, -yu|c
:Vz - : 0. 0 0% v 1 -X%% -y, :d
Fs| % ¥ 1 0 0 0 -xu; -yuje
Vo [O 0 0 X Y5 1 =XV —VYavsf
FUs| (% Yo 1 0 0 0 -xu, -yu g
Vel 0 0 0 x v, 1 -xv - y4V4’7 [h

© Bruce A. Draper

—

= What's going on here?

© Bruce A. Draper

Review:
(2D) Perspective Transform

= Recall the basic equation for the perspective

transform
ul [a b c[[x
V|=rd e f|y
g h 1y
u=U/v=v(

= The only practical way to specify an image
transform is by providing four point
correspondences

© Bruce A. Draper

Computing...

= So if we want the following mapping:
(0,0)-(0,0), (0,144) (0,144),
(152,0)- (152,50), (152,144) (152,94)

0O 0 1 0 0O 0 o [

0O 0 0 0 o0 1 0 0

0 1441 0 0 O 0 0

0O 0 0 0 1441 0 —20736|

52 0 1 0 0 0 -23104 0

0O 0 0152 0 1 -7600 0
152 144 1 0 0 0 -23104 -21888

0O O 0 152 144 1 -14288 -1353

© Bruce A. Draper

i ...More Computing...

-.014 -.023 007 .023 .014 .022 -.007 -.024[O [al [3.274]

-007 0 007 0O O 0 O 0o [Fo| b 0
1 0 0 o0 0 0 0 o [ol [c 0
-.002 -.014 .002 .007 .002 .014 -.002 -.007|144| [d|_[1077
-.007 -.007 .007 .007 .007 O -.007 O [152| |e|l [1
0 1 0 0o 0 o 0 0o 50| [f 0
000 -.000 .000 .000 .000 .000 -.000 DOO(‘ESZ g| 101497
-000 0 000 O 000 O =-000 O [[f94] [h 0

/_Y_/
M-1 u&v
vector

© Bruce A. Draper

3274 0 O
1077 1 0
01497 0

© Bruce A. Draper

$ Image Manipulation (I1)

= Step 1: Filter the source image, based on the
Nyquist rate of the target

= Step 2: Calculate geometric transformation
= Affine transformation, given three point
correspondences
= Perspective transformation, given four

= Step 3: Interpolate filtered values
= Three methods:
= Source— Target
= Target— Source

= 2 Pass (Source. Target)
© Bruce A. Draper

Target— Source

= Invert transformation matrix computed on slide #14
= For every target pixel,
= Apply (inverted) transform M to (x,y) coordinates
= provides position of source data
= In general, non-integer coordinates
= If M(x,y) falls outside the source image, return black
= Interpolate M(x,y) from filtered source pixel values
= nearest neighbor (takes nearest source pixel)
= bilinear
= bicubic

© Bruce A. Draper

o Interpolation

src dest

Think of an image as a grid with pixels at the vertices. Wher]
applying a dest src transformation, the result will not fall
exactly on a pixel (most of the time).

© Bruce A. Draper

= Bilinear interpolation:
= project target image to real-value source location
= let tx = loc(x) - int(loc(x)), ty=loc(x)-int(loc(x))
_ Pl),o(l_tx)(l_ty)+ Po,l(l_tx)ty + Pl,otx(l_ty) + Pl,ltxmy
h 1
= Good Points: identity transform does not smooth
= Bad Points: spatial block filter is horrible in

frequency space

= may cause frequency aliasing
© Bruce A. Draper

Cubic interpolation uses the sixteen pixels around
the source location for interpolation

bbb O

333 g2t

© Bruce A. Draper

Cubic Interpolation (lI)

m Let X0 = trunc(x)-1, X = Xt 1, X = Xsgt2, Xg™Xsot3
= Letygo=trunc(y)-1, Y1 = Yot 1, Yso = Ysg+2, Ysi=Yeot3

Fo(X) =8¢ +bx + g x+d,
O0<k<3

R (Xsm) = S(Xsm’ ysk)

= Compute four cubic polynomials, one for each row:

© Bruce A. Draper

i Cubic Interpolation (111)

= Then compute one polynomial in y at X3 X

= The value of this polynomial at yzys the
interpolated value.

From the Intel Image Processing Library Reference Manual, pg. B-6

© Bruce A. Draper

Side Note:
Solving Cubic Equations

= Any cubic equation of the form:
y +py’+ay+r=0

= Can be rewritten as
x*+ax+b=0

= By substituting:
y=X-—

= where: 3

a:%(Sq— pz), b=%(2p3—9pq+27r)

© Bruce A. Draper

Solving Cubic
$ Equations (I1)
= Equations of the form:
x*+ax+b=0
= Have a closed for solution. Let:

2 3 2 3
Ang_tu e Bng_b_ b, a
2 V4 27 2 V4 27

= Then the roots are:

Xx=A+B,
A+B A-B A+B A-B
X=————+———/[—3,X=- -— —J-3
2 2 2 2

© Bruce A. Draper

Examples of Planar
Transformations

= Given multiple images of different side of an
object and a 3D model, you can “paint” the mode
with the images...

kil

Fem 7 i s e s = B s
T |y i) s s P g
g o] e e e e i v e e

From Debevec, Taylor & Malik, SIGGRAPH ‘96

© Bruce A. Draper

o Examples (1)

...and then project the
model to any other
view

IeA 0 1 e = o Uy
Ha, =y = i el W A

© Bruce A. Draper

$ Transformations:

= So far, we have discussed only targetource
transformations:
= Guaranteed to leave no holes
= ldentity transform blurs image (unless NN interpolatio
= May skip source pixels if shrinking source
= Alternative: source- target
= For every source pixel,
= project four corner points into target image
= calculate overlap with target pixels (expensive)
= treat target image as accumulator array

= Warning: may leave holes if expanding source
© Bruce A. Draper

wﬂl)

[ul [a b [
tyl=fo 1 ofvy This pass read the rows of the
Ful Fo o 1(:1 image, adjusting x

Now we want to read the columns
of the image — but what value is ?

© Bruce A. Draper

i Examples (llI)

Although it may require merging overlapping views

© Bruce A. Draper

$ 2-Pass __'I_'r_z}nsformations

= An alternative for Affine transformations is a 2
pass approach:
= Any affine transformation can be broken down into
= alinear transformin X, followed by
= a not-neccessarily-linear transformin Y
u [a b cf[x
vi=rd e fy
1 0 0 17y

© Bruce A. Draper

Let ? be g:
v=dx+ey+f gu=dx
=gu+ey+f u=ax+by+c
= u-by-c
a
_dx_d(u-by-c)

Non linear, but easy{ g

to compute ua

© Bruce A. Draper

2 Pass (IV)

= Why would you do this?

= Very fast on vector hardware
= stream the image through by rows, adjusting x
= stream the image through by columns, adjusting y

= Handy when morphing splines...
= Linear in both directions for rotation

© Bruce A. Draper

