
Image Compression &
Image Formats

Lecture 11

February 18, 2002

ÿ Bruce A. Draper

Formats, Formats

As you may already have discovered, there are dozens of
common image formats. Why?

ÿ Optimized for different image types
ÿ 2D/3D, bw/color, real/integer, sequences, range…

ÿ History & corporate policy
ÿ GIF was proprietary, MPG is owned by a consortium

ÿ Compression Schemes
ÿ LUT, RLE, LZW, DCT

Dull
Interesting

ÿ Bruce A. Draper

��� � ��� � � � �
ÿ Limited Transmission Bandwidth

ÿ videoconferencing

ÿ the Internet

ÿ Limited Storage Capabilities
ÿ Imagine trying to store the images off your cable system:

ÿ ~100 stations

ÿ 30 frames/sec

ÿ 3 colors

ÿ ~600x400 pixels perframe

ÿ Total: over 2 GPixels per second!

ÿ DVDs

ÿ Limited retrieval from storage
ÿ FBI mug shot database (too many faces to compare!)

Does it matter?

ÿ Bruce A. Draper

Color Maps (LUTs)
Lets assume that the source image is made up of 3 8-bit

(RGB) values per pixel. Then..

ÿ If the image is smaller than 4,000 x 4,000, not every color
combination is used
ÿ Even if it is larger, some combinations are probably missed…

ÿ This can be used to compress the data:
ÿ store a table of the used colors (any order)

ÿ for every pixel, store the table index of the corresponding color

Simple, lossless compression...

Q: When does this compress data?

ÿ Bruce A. Draper

Run Length Encoding (RLE)
Another simple trick is to note that pixels often have the same

value as the pixel next to them.

ÿ RLE: Values are written as pairs:
ÿ the pixel value

ÿ the number of consecutive pixels with this value
ÿ in scan-line order

ÿ Generally compresses
ÿ Works very well for flat graphics (e.g. icons)

ÿ Can expand rather than compress a highly textured image

ÿ Works well in combination with color maps

More simple, lossless compression...

ÿ Bruce A. Draper

GIF
ÿ GIF is a format developed back when the only images that

PCs could manipulate were simple graphics.
ÿ Employs a color table

ÿ Users can set it to 8, 16, or 24 bytes

ÿ Employs run length encoding

ÿ Other, irrelevant oddities (like the coordinate system)

ÿ GIF compresses “flat” graphics very well

ÿ Compresses most images very poorly

ÿ New versions have a lot of settings that applications
programmers can control...



ÿ Bruce A. Draper

Lempel-Ziv-Welch (LZW)
LZW is a string coding algorithm. Lets assume 8-bit source

data (black and white, this time)

ÿ LZW uses code words that are longer than the pixel size
ÿ for 8-bit data, 10-bit codes are common

ÿ A table is initialized with all possible pixel values
ÿ e.g. a 10-bit table, with values 0-255 pre-assigned.

ÿ Bruce A. Draper

LZW (II)
ÿ Now, the trick is to encode sequences:

ÿ if the current pixel and the next pixel are not in the table as a pair,
add them to the table and store the index.

ÿ If they are in the table, consider them as one pixel and see if that
plus the next neighbor is in the table as a pair; if not, add & store
index

ÿ When table is full, record index of longest entry starting at the
current pixel

ÿ Bruce A. Draper

LZW (Example)

11 34 11 34 35 34 35 38 35 36 37 38 39 34 35 40...
Original Image

… …
254 254
255 255
256 11, 34
257 256, 35
258 34, 35
259 38, 35
260 36, 37
261 38, 39
262 258, 40

256 257 258 259 260 261 262...

Compressed Image

ÿ Bruce A. Draper

TIFF
ÿ LZW is the backbone of the TIFF file format

ÿ It is also an option for GIF

ÿ This may or may not be legal, since Unisys claims to have
a patent on the LZW algorithm.

ÿ TIFF can also be blocked to aid locality of reference

ÿ TIFF is the best lossless format for general images

ÿ An API library for the tiff format is freely available

ÿ Bruce A. Draper

Huffman Coding
Huffman coding is an optimal, lossless compression scheme

ÿ Every pixel is mapped onto a variable-length bit string
according to a probability table, as follows:
ÿ For an example, I will show an example of Huffman coding digits

(0-9), but for an 8-bit image you would Huffman code 0-255

Digit
Prob.

0 1 2 3 4 5 6 7 8 9
.1 .3 .1 .03 .1 .05 .1 .06 .05 .1

Digit
Prob.

0 1 2 4 6 7 8 9 3/5
.1 .3 .1 .1 .1 .06 .05 .1 .08

ÿ Bruce A. Draper

Huffman (II)
Digit
Prob.

0 1 2 4 6 9 3/5 7/8
.1 .3 .1 .1 .1 .1 .08 .11

Digit
Prob.

0 1 2 4 6 3/5/9 7/8
.1 .3 .1 .1 .1 .18 .11

Digit
Prob.

0 1 2 4/6 3/5/9 7/8
.1 .3 .1 .2 .18 .11

Digit
Prob.

1 0/2 4/6 3/5/9 7/8
.3 .2 .2 .18 .11

Digit
Prob.

1 0/2 4/6 3/5/7/8/9
.3 .2 .2 .29



ÿ Bruce A. Draper

Huffman (III)
Digit
Prob.

1 0/2/4/6 3/5/7/8/9
.3 .4 .29

Digit
Prob.

0/2/4/6 1/3/5/7/8/9
.4 .59

Digit
Prob.

0/1/2/3/4/5/6/7/8/9
.99

ÿ Bruce A. Draper

Huffman (IV)
Now arrange in a tree; the code forevery symbol is its path

(Note that these are variable length)

0/1/2/3/4/5/6/7/8/9

0/2/4/6 1/3/5/7/8/9

3/5/7/8/9 10/2 4/6

0 2 4 6 3/5/9 7/8

7 893/5

3 5

0 1

0 1

0 1 0 1

0 1

0 1

0 0

0

1

1

1

ÿ Bruce A. Draper

Huffman (V)

ÿ Once the table is built, each pixel is converted to a bit
string, and all the bit strings are concatenated.

Digit
Code

0 1 2 3 4 5 6 7 8 9
000 11 001 10000 010 10001 011 1010 1011 1001

ÿ Bruce A. Draper

Discrete Cosine Transform (DCT)

ÿ The Discrete Cosine Transform is similar to the Fourier
transform, in that is represents a signal as a sum of cosine
waves.

ÿ It differs in that it mirrors the signal (image) in both
directions, fixing the phase of the cosines

ÿ The DCT therefore has no imaginary component

ÿ The size of the DCT description of an image is the same as
the size of the original image

Intuitive Version Only

ÿ Bruce A. Draper

JPEG

ÿ JPEG first divides the image into 8x8 subimages
ÿ For each subimage, it:

ÿ Computes the DCT (limited to 11 bits, assuming 8 bit source)
ÿ DC component is difference coded to previous 8x8 square
ÿ For every compression “quality level” (1-100), it assigns a number

of bits per frequency
ÿ Quantizes the frequency information
ÿ Unfolds 2D array in S pattern to form 1D vector
ÿ Computes a Huffman code for the discretized frequencies.

ÿ This is the best widely-available “lossy” standard

A lossy compression standard

ÿ Bruce A. Draper

MPEG
ÿ MPEG is a compression for motion video

ÿ Actually, it’s a series of them: MPG1, MPG2,…

ÿ It works by matching an image to its successor:
ÿ compute the transformation that best maps the image

onto its successor

ÿ encode the successor as the difference between the
transformed source and the true successor

ÿ since the result is mostly zeroes, it compresses well
ÿ via Huffman, LZW, or RLE

ÿ But to understand the details, we have to know
how to match images….

How about video?


