Image Compression &
q Image Formats

Lecture 11
February 18, 2002

Formats, Formats

As you may already have discovered, there are dozens of

common image formats. Why?
= Optimized for different image types

= 2D/3D, bw/color, real/integer, sequences, range...

= History & corporate policy

= GIF was proprietary, MPG is owned by a consortium
= Compression Schemes Interesting

= LUT, RLE, LZW, DCT

© Bruce A. Draper

n

Does it matter?

= videoconferencing
= the Internet
= Limited Storage Capabilities
= Imagine trying to store the images off your cable system:
= ~100 stations
30 frames/sec
3 colors
= ~600x400 pixels peframe
= Total: over 2 GPixels per second!
= DVDs

= Limited retrieval from storage

= FBI mug shot database (too many faces to compare!)
© Bruce A. Draper

Simple, lossless compression...

Color Maps (LUTS)

Lets assume that the source image is made up of 3 8-bit
(RGB) values per pixel. Then..

= If the image is smaller than 4,000 x 4,000, not every color
combination is used
= Evenifitis larger, some combinations are probably missed...

= This can be used to compress the data:
= store a table of the used colors (any order)
= for every pixel, store the table index of the corresponding color

Q: When does this compress data?

© Bruce A. Draper

More simple, lossless compression...

Another simple trick is to note that pixels often have the same]
value as the pixel next to them.
= RLE: Values are written as pairs:
= the pixel value
= the number of consecutive pixels with this value
= in scan-line order
= Generally compresses
= Works very well for flat graphics (e.g. icons)
= Can expand rather than compress a highly textured image
= Works well in combination with color maps

© Bruce A. Draper

GIF

= GIF is a format developed back when the only images that
PCs could manipulate were simple graphics.
= Employs a color table
= Users can set it to 8, 16, or 24 bytes
= Employs run length encoding
= Other, irrelevant oddities (like the coordinate system)

= GIF compresses “flat” graphics very well
= Compresses most images very poorly

= New versions have a lot of settings that applications
programmers can control...

© Bruce A. Draper

LZW is a string coding algorithm. Lets assume 8-bit source
data (black and white, this time)
= LZW uses code words that are longer than the pixel size
= for 8-bit data, 10-bit codes are common
= Atable is initialized with all possible pixel values
= e.g. a 10-bit table, with values 0-255 pre-assigned.

© Bruce A. Draper

i LZW (1)

= Now, the trick is to encode sequences:

= if the current pixel and the next pixel are not in the table as a pai
add them to the table and store the index.
If they are in the table, consider them as one pixel and see if tha]
plus the next neighbor is in the table as a pair; if not, add & storg
index
When table is full, record index of longest entry starting at the
current pixel

© Bruce A. Draper

$ LZW (Example)
113411343534 353835363738393435 4%}

254 | 254

255 | 255

256 | 11,34 Compressed Image
2571256 35 ‘ 256 257 258 259 260 261 262... ‘
258 | 34,35

259 | 38,35

260 | 36,37

261 | 38,39

262|258 40

© Bruce A. Draper

TIFF

= LZW is the backbone of the TIFF file format
= lItis also an option for GIF

= This may or may not be legal, since Unisys claims to have
a patent on the LZW algorithm.

= TIFF can also be blocked to aid locality of reference

= TIFF is the best lossless format for general images
= An APl library for the tiff format is freely available

© Bruce A. Draper

Huffman Coding

Huffman coding is an optimal, lossless compression scheme
= Every pixel is mapped onto a variable-length bit string
according to a probability table, as follows:

= For an example, | will show an example of Huffman coding digits
(0-9), but for an 8-bit image you would Huffman code 0-255

Digit 0123 4567 89
Prob. 1.3.1.03.1.05.1.06.05.1
Digit 012 467 8 9 35
Prob. 1.3.1.1.1.06.05.1 .08

© Bruce A. Draper

!‘ Huffman (II)
Digit 012 4609 3578

Prob. 13.1.1.1.1 .08.11
Digit 012 4 6 3/59 7/8
Prob. 13.1.1.1 .18 11
Digit 0 12 4/6 3/5/9 7/8
Prob. 1.3.1 .2 .18 .11
Digit 1 0/2 4/6 3/5/9 7/8
Prob. 3.2 2 .18 .11
Digit 1 0/2 4/6 3/5/7/8/9
Prob. 3 2

© Bruce A. Draper

$Huffman (1)

Digit 1 0/2/4/6 3/5/7/8/9
Prob. 3 4 .29
Digit 0/2/416 1/3/5/7/8/9
Prob. 4 .59
Digit 0/1/2/3/4/516/7/8/9
Prob. .99

© Bruce A. Draper

Huffman (1V)

ow arrange in atree; the code favery symbol is its path
(Note that these are variable length)

0/1/2/3/4/5/6/7/8/9

© Bruce A. Draper

o Hufiman (V)

= Once the table is built, each pixel is converted to a bit
string, and all the bit strings are concatenated.

Digt 0 1 2 3 4 5 6 7 8 9
Code 000 11 001 10000 010 10001 011 1010 1011 1001

© Bruce A. Draper

;‘ Discrete Cosine Transform (DCT)

Intuitive Version Only

= The Discrete Cosine Transform is similar to the Fourier

transform, in that is represents a signal as a sum of cosirle

waves.

It differs in that it mirrors the signal (image) in both

directions, fixing the phase of the cosines

= The DCT therefore has no imaginary component

= The size of the DCT description of an image is the same ps
the size of the original image

© Bruce A. Draper

A lossy compression standard

J P E G e

= JPEG first divides the image into 8x8 subimages

= For each subimage, it:
= Computes the DCT (limited to 11 bits, assuming 8 bit source)
= DC component is difference coded to previous 8x8 square

= For every compression “quality level” (1-100), it assigns a number
of bits per frequency

Quantizes the frequency information
Unfolds 2D array in S pattern to form 1D vector
Computes a Huffman code for the discretized frequencies.

= This is the best widely-available “lossy” standard

© Bruce A. Draper

How about video?

= MPEG is a compression for motion video
= Actually, it's a series of them: MPG1, MPG2,...
= |t works by matching an image to its successor:
= compute the transformation that best maps the image
onto its successor
= encode the successor as the difference between the
transformed source and the true successor
= since the result is mostly zeroes, it compresses well
= via Huffman, LZW, or RLE
= But to understand the details, we have to know
how to match ima%es...

Bruce A. Draper

