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Image Eigenspaces

ÿ Overview
ÿ Background

ÿ What is the meaning of a Covariance Matrix.
ÿ Eigenspaces and rotation.

ÿ Basics: Find template with Highest Correlation
ÿ Images as vectors and correlation for comparison.

ÿ Eigenspace Theorem
ÿ Anatomy of the Covariance Matrix.

ÿ Eigenspaces and Singular Value Decomposition
ÿ Examples of Eigen Subspace Projection

Overview: Goal

ÿ Assume you have a gallery (database) of images,
and a “probe” image.

ÿ The goal is to find the database image that is most
similar to the probe image.
ÿ “Similar” can be defined according to any measure

ÿ e.g. correlation

Example: Finding Cats

“Probe” image -- image to be matched

Gallery of database images

Registration
ÿ For PCA, all images must be aligned

ÿ Images are points in N-dimensional space
ÿ Dimensions meaningless unless points correspond

ÿ In the minimum, comparisons undefined if sizes
differ

ÿ For scale, translation and in-plane rotation
ÿ Match three points
ÿ Apply an affine transformation

ÿ For out-of-plane rotation:
ÿ Match four points
ÿ Apply a perspective transformation

Example: Finding Faces
Probe image, registered to gallery

Registered Gallery of Images



Alternative:
Multiple Images of One Object

ÿ Another reason for matching a probe against a
gallery is that the gallery contains all possible
views of an objects

ÿ Needs an image of the source object for all
viewpoints

ÿ Needs an image of the source object under all
lighting conditions

Alternate Example

Example Probe image

Five of 71 gallery images (COIL)

Eigenspace & Covariance.
ÿ There are several ways to understand Eigenspaces.
ÿ Related concepts include:

ÿ Principle Components Analysis.
ÿ Multivariate Random Variables.

ÿ Supplementing Trucco, we begin with a simpler problem:
ÿ Label 2D points produced by two different processes.
ÿ Processes are multivariate normal random variables.

ÿ The goal is to clarify the meaning of the covariance matrix.
ÿ The covariance matrix is a key concept.
ÿ Visualizing what it tells us in 2D will help with ND.

Background Concepts:

Variance

ÿ Variance is a measure ofcentral tendency, define
as:

ÿ Note that the square root of the variance is the
standard deviation
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Background Concepts:

Covariance

ÿ Covariance is a measure of whether two sets vary
together:

ÿ How does this differ from correlation?
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Background Concepts:

Covariance Matrices

ÿ Covariance between two sets of vectors can be
expressed as a matrix:
ÿ Let x = {x1, …, xn}

ÿ Let y = {y1, …, yn}

ÿ Then:
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Background Concepts:

Outer Products
ÿ Remember that an outer product looks like:

ÿ Why? Because if I have two samples from a
population of zero-meaned vectors, their
covariance is their outer product
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Multivariate Normal Random
Variables & Covariance

ÿ Covariance generalizes variance for multiple
dimensions.

ÿ The Gaussian Probability Distributions Function
(pdf) in more than 1 dimension is:

ÿ Consider the case of a 2D Gaussian.
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Special Case of 2D Gaussian

ÿ Let ...
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Probability Level Curves
Consider the following 2D Gaussian.
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σ x = 4, σ y = 2, µ x = 3, µ y = 5

Quadratic Forms & Normal r.v.s
ÿ Look at the exponent of the 2D Gaussian, it has the form:

ÿ Singular value decomposition tells us that:

ÿ R rotates coordinates such that matrix M is diagonal.
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Quadratic Forms Rotated
Specify any quadratic form as rotation from axis aligned.
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A Rotated Form Example
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Putting It Together
ÿ Take what we learned about rotated quadratic forms:

ÿ What about taking the inverse of the Covariance Matrix?
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Take Reciprocal Down Diagonal

ÿ A lovely little result about Diagonal Matrices.
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SVD For Example

 = M UT D V

ÿ The general form for Singular Value Decomposition.

ÿ For our example

ÿ Compare the U matrix to the original rotation matrix
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Different Distributions
ÿ Consider an observationx in R3, and assume it must come

from one of the following.

ÿ There are several cases.
ÿ Covariance matrices symmetric.
ÿ Covariance matrices are the same.
ÿ Covariance matrices aligned.
ÿ Each Covariance Matrix is distinct.

ÿ More complex problem, means and covariance unknown.

C1 = N(µ1,Ω1), C2 = N(µ2 ,Ω2), C3 = N(µ3,Ω3 ),

Symmetric, Different Means
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Common Alignment
= means
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Different Covariances
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Principle Components (Axes)
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