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This material is also covered (too briefly) in Trédo [7
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= Overview
= Background
= What is the meaning of a Covariance Matrix.
= Eigenspaces and rotation.
= Basics: Find template with Highest Correlation
= Images as vectors and correlation for comparison.
= Eigenspace Theorem
= Anatomy of the Covariance Matrix.
= Eigenspaces and Singular Value Decomposition
= Examples of Eigen Subspace Projection

i Overview: Goal

= Assume you have a gallery (database) of images,
and a “probe” image.

= The goalis to find the database image that is most
similar to the probe image.
= “Similar” can be defined according to any measure
= €e.g. correlation

$ Registration

= For PCA, allimages must be aligned
= Images are points in N-dimensional space
= Dimensions meaningless unless points correspond

= In the minimum, comparisons undefined if sizes
differ

= For scale, translation and in-plane rotation
= Match three points
= Apply an affine transformation
= For out-of-plane rotation:
= Match four points
= Apply a perspective transformation

$ Example: Finding Faces
u Probe image, registered to gallery

Registered Gallery of Images
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Alternative:

= Another reason for matching a probe against a
gallery is that the gallery contains all possible
views of an objects

= Needs an image of the source object for all
viewpoints

= Needs an image of the source object under all
lighting conditions

= There are several ways to understand Eigansp.

= Related concepts include:
= Principle Components Analysis.
= Multivariate Random Variables.

= Supplementing Trucco, we begin with a simpler problem:
= Label 2D points produced by two different processes.
= Processes are multivariate normal random variables.

= The goal is to clarify the meaning of the covariance matrix|
= The covariance matrix is a key concept.
= Visualizing what it tells us in 2D will help with ND.

Background Concepts:
Covariance

= Covariance is a measure of whether two sets v3
together:

2 (x=x)y-y)
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= How does this differ from correlation?
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Background Concepts:
Variance

as:

= Note that the square root of the variance is the
standard deviation

Background Concepts:
Covariance Matrices

= Covariance between two sets of vectors can be
expressed as a matrix:
w Letx={x,, ..., X}
= Lety ={y;, -, Yo}

= Then:
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Background Concepts:
Outer Products

= Remember that an outer product looks like:
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= Why? Because if | have two samples from a
population of zero-meaned vectors, their
covariance is their outer product

Multivariate Normal Random
Variables & Covariance

= Covariance generalizes variance for multiple
dimensions.

= The Gaussian Probability Distributions Function
(pdf) in more than 1 dimension is:
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= Consider the case of a 2D Gaussian.

$ Special Case of 2D Gaussian
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$ Probability Level Curves
Consider thé_fa-l-lbwing 2D Gaussian.
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$ Quadratic Forms & Normal r.v.s

= Look at the exponent of the 2D Gaussian, it has the forn]:
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= Singular value decomposition tells us that:
M =RAR™
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= R rotates coordinates such that matrix M is diagonal.

r12 r22

Quadratic Forms Rotated

Specify any quadratic form as rotation from axis aligned.
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i A Rotated Form Example
1
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f,(u, v) =8x2+2y? f,(X, y) = 6.49%% = 5.20x y + 3.50y*

i Putting It Together

= Take what we learned about rotated quadratic forms:
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= What about taking the inverse of the Covariance Matrix?)

= A lovely little result about Diagonal Matrices.
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= The general form for Singular Value Decomposition.
M=UTDV
= For our example
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= Compare the U matrix to the original rotation matrix
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$ Differen_@___l;}istributions

= Consider an observationin R3, and assume it must come
from one of the following.

C = N(4y,Qy), C, = N(4,,Q,), C; = N(14,Q,),

= There are several cases.
= Covariance matrices symmetric.
= Covariance matrices are the same.
= Covariance matrices aligned.
= Each Covariance Matrix is distinct.

= More complex problem, means and covariance unknowr.

$ Symmetric, Different Means
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i Common Alignment
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