
Interpretation Trees

CS510

Lecture #24

April 23, 2001

ÿ Bruce A. Draper

Variations on Object Recognition
Problem 1:Is this part of the image an instance of X?

Given a model and given and image region.

Problem 2a:What is this part of the image?
Model search is needed but image region is given.

Problem 2b:Are there any instances of X in the image?
Given model, image search is needed.

Problem 4:What objects are we looking at?
Model search and image region search are needed.

Related question, is the model expressed in
2D image space or 3D scene space.

ÿ Bruce A. Draper

Interpretation Tree Overview
Use tree search to find a mapping of model features to

image features which is geometrically consistent.

Model Image

A B

C D

1 2

3 4

(A,1),
(B,2),
(C,3),
(D,4)

(A,4),
(B,3),
(C,2),
(D,1)

?

ÿ Bruce A. Draper

Interpretation Trees
ÿ The model is a set of features with local

properties:

ÿ 2D line segments (length, orientation, contrast…)

ÿ 2D image regions (avg. intensity, texture, …)

ÿ 3D line segments (length, orientation, depth…)

ÿ The image data is expressed in the same format

ÿ Binary relations:

ÿ Constraints between features

ÿ Between lines: parallel, endpoint near, etc.

ÿ Between regions: above, inside, etc.

ÿ Bruce A. Draper

Example of a Model
ÿ Four Features

ÿ Lines A, B, C & D

ÿ Unary Constraints
ÿ Minimum length for A, B, C & D

ÿ Binary Constraints
ÿ Parallel: (A,B)

ÿ Above: (C,A), (D, B)

ÿ Left-of: (A,B), (C, D)
Model

A B

C D

Question: how precise is this model?

ÿ Bruce A. Draper

Locally Consistent
Interpretation Trees

ÿ Interpretation trees map image features onto
model features so as to preserve constraints.
ÿ To assign image feature 1 to model feature A, 1 and A

must be of the same type and their unary features must
“match”

ÿ If 1 is assigned to A, then 2 cannot be assigned to B
unless:

ÿ 2 & B are the same type & match (as above)

ÿ 1&2 satisfy the binary constraints for A&B



ÿ Bruce A. Draper

Example of a Tree

Model

A B

C D

Image

1 2

3 4

{}

{(A,1)} {(A,2)} {(A,3)} {(A,4)}

{(B,1)} {(B,2)} {(B,3)} {(B,4)}

{(C,1)} {(C,2)} {(C,3)} {(C,4)}

{(D,1)} {(D,2)} {(D,3)} {(D,4)}

Red lines denote assignments that do not
allow further assignments

ÿ Bruce A. Draper

Interpretation Trees (cont.)

ÿ Not every image feature will belong to the model

ÿ Background “clutter”

ÿ Feature extraction errors

ÿ Not every model feature will appear in the image
ÿ (self) Occlusion

ÿ Feature extraction errors

ÿ The best match is the one with the most
correspondences

ÿ Bruce A. Draper

Generic Interpretation Tree
Algorithm (Part 1)

Note: this algorithm is not an exact match to the one in your
book (but its close)

ÿ Let Model be the list of model features {m1,…,mn}

ÿ Let Data be the list of image features {d1,…,dm}

ÿ Let Interp be an (initially empty) list of model/data pairs

ÿ Let UnaryP(mi,dj) return true iff dj meets mi’s unary constraints

ÿ Let BinaryP(mi,dj,Interp) return true iff the pair (mi, dj) is consistent
in terms of binary constraints with every pair already in Interp

ÿ List operators (emptyp, destructive pop, non-destructive append)

ÿ Bruce A. Draper

Generic Interpretation Tree
Algorithm (Part 2)

InterpTree(Model, Data, Interp) {
if (emptyp(Model)) return Interp;
m := pop(Model);
maxlist = Interp;
for d in Data do {

if (UnaryP(m,d) and BinaryP(m,d,Interp)) {
newlist = InterpTree(Model, Data, append((m,d),Interp));
if (size(newlist) > size(maxlist)) maxlist := newlist;

}}
newlist = InterpTree(Model, Data, Interp);
if (size(newlist) > size(maxlist)) maxlist := newlist;
return newlist; }

ÿ Bruce A. Draper

Questions
ÿ Should the recursive call in blue be:

InterpTree(Model, remove(d, Data), append((m,d),Interp));

ÿ What would the difference be?

ÿ What is the role of the last recursive call (in green)?

ÿ What would be the effect of removing it?

ÿ Is this algorithm guaranteed to terminate?

ÿ How efficient is it?

ÿ Bruce A. Draper

Observations

ÿ Note the number of combinations tried (worst case)

ÿ This can be inverted if model is larger than data
(this is rare). The complexity is then:O(nm)

ÿ Pruning based upon geometric constraints is
critical!

s =1+ m+ m2 + � + mn , complexityO(mn)



ÿ Bruce A. Draper

More Observations

ÿ Eric Grimson has proven polynomial complexity
in the averagecase if:
ÿ Consider only rotation and translation.

ÿ The model is guaranteed to be present.

ÿ No partial symmetries.

ÿ Otherwise, complexity is exponential.

ÿ Bruce A. Draper

Branch & Bound

ÿ One way to limit the search is “branch & bound”

ÿ Create a new argument to InterpTree that is the size of
the largest interpretation found so far (along any path)

ÿ If the size of the current interpretation plus the size of
the remaining (unmatched) model is less than the
current bound, don’t recurse.

ÿ Guaranteed never to introduce an error

ÿ On average, prunes search tree (some)

ÿ In the worst case, no faster than previous
algorithm

ÿ Bruce A. Draper

B&B Algorithm
int bestsize = 0; // Note that this is global
InterpTree(Model, Data, Interp) {

if (emptyp(Model)) return Interp;
if (size(append(Model, Interp)) < bestsize) return NIL;
m := pop(Model);
maxlist = Interp;
for d in Data do {

if (UnaryP(m,d) and BinaryP(m,d,Interp)) {
extended_match = append((m,d), Interp);
bestsize = Max(bestsize, size(extended_match));
newlist = InterpTree(Model, Data, extended_match));
if (size(newlist) > size(maxlist)) maxlist := newlist;

}}
newlist = InterpTree(Model, Data, Interp);
if (size(newlist) > size(maxlist)) maxlist := newlist;
return newlist; } ÿ Bruce A. Draper

Ullman’s Algorithm
CACM ‘77

ÿ Create an n×m matrix C
ÿ Cij = 1ÿ Datai is consistent with Modelj

ÿ Initialize C using UnaryP(i,j)

ÿ Propagate binary constraints:
ÿ For every binary relation rel(A,B),

ÿ Datai is only consistent with Ma iff it is consistent with some
Dataj that is consistent with Mb

ÿ Otherwise, set entry in C to zero

ÿ Keep Propagating binary constraints until no
change in C

ÿ Bruce A. Draper

Ullman’s Algorithm (cont.)
ÿ Preprocess by propagating constraints

as described on previous slide

ÿ Search as before, except

ÿ After every model/data binding, repropagate
constraints

ÿ Note that branch & bound is consistent with
Ullman’s algorithm


