

Generic Interpretation Tree Algorithm (Part 1)

Note: this algorithm is not an exact match to the one in your book (but its close)

- Let Model be the list of model features $\{m_1, \dots, m_n\}$
- Let Data be the list of image features $\{d_1, \dots, d_m\}$
- Let Interp be an (initially empty) list of model/data pairs
- Let UnaryP(m_i,d_j) return true iff d_j meets m_i's unary constraints
- Let BinaryP(m_i,d_j,Interp) return true iff the pair (m_i, d_j) is consistent in terms of binary constraints with every pair already in Interp
- List operators (emptyp, destructive pop, non-destructive append)

© Bruce A. Draper

Questions

- Should the recursive call in blue be: InterpTree(Model, remove(d, Data), append((m,d),Interp));
- What would the difference be?
- What is the role of the last recursive call (in green)?
- What would be the effect of removing it?
- Is this algorithm guaranteed to terminate?
- How efficient is it?

© Bruce A. Draper

Observations

• Note the number of combinations tried (worst case)

 $s = 1 + m + m^2 + \ldots + m^n$, complexity $O(m^n)$

- This can be inverted if model is larger than data (this is rare). The complexity is then: $O(n^m)$
- Pruning based upon geometric constraints is critical!

© Bruce A. Draper

