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Direct Least Square Fitting of Ellipses

Andrew Fitzgibbon, Maurizio Pilu, and Robert B. Fisher

Abstract—This work presents a new efficient method for fitting ellipses
to scattered data. Previous algorithms either fitted general conics or
were computationally expensive. By minimizing the algebraic distance
subject to the constraint 4ac - b2 = 1, the new method incorporates the
ellipticity constraint into the normalization factor. The proposed method
combines several advantages: It is ellipse-specific, so that even bad
data will always return an ellipse. It can be solved naturally by a
generalized eigensystem. It is extremely robust, efficient, and easy to
implement.

Index Terms—Algebraic models, ellipse fitting, least squares fitting,
constrained minimization, generalized eigenvalue problem.

————————   F   ————————

1 INTRODUCTION

THE fitting of primitive models to image data is a basic task in
pattern recognition and computer vision, allowing reduction and
simplification of the data to the benefit of higher level processing
stages. One of the most commonly used models is the ellipse
which, being the perspective projection of the circle, is of great
importance for many industrial applications. Despite its impor-
tance, however, there has been until now no computationally effi-
cient ellipse-specific fitting algorithm [14], [5].

In this paper, we introduce a new method for fitting ellipses,
rather than general conics, to segmented data. As we shall see
in the next section, current methods are either computationally
expensive iterative approaches, or perform ellipse fitting by
least-squares fitting to a general conic and rejecting non-
elliptical fits. These latter methods are cheap and perform well
if the data belong to a precisely elliptical arc with little occlu-
sion but suffer from the major shortcoming that under less
ideal conditions—nonstrictly elliptical data, moderate occlu-
sion or noise—they often yield unbounded fits to hyperbolae.
In a situation where ellipses are specifically desired, such fits
must be rejected as useless. A number of iterative refinement
procedures [16], [8], [12] alleviate this problem, but do not
eliminate it. In addition, these techniques often increase the
computational burden unacceptably.

This paper introduces a new fitting method that combines the
following advantages:

1)� ellipse-specificity, providing useful results under all noise
and occlusion conditions;

2)� invariance to affine transformation of the data;
3)� high robustness to noise; and
4)� high computational efficiency.

After a description of relevant previous ellipse fitting methods,
in Section 3 we describe the method and provide a theoretical
analysis of the uniqueness of the elliptical solution. Section 4 con-
tains experimental results, notably to highlight behavior with
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nonelliptical data, low-eccentricity bias, and noise resilience. We
conclude by presenting some possible extensions.

2 PREVIOUS METHODS AND THEIR LIMITATIONS

The literature on ellipse fitting divides into two broad techniques:
clustering (such as Hough-based methods [9], [19]) and least-
squares fitting.

Least-squares techniques center on finding the set of parame-
ters that minimize some distance measure between the data points
and the ellipse. In this section, we briefly present the most cited
works in ellipse fitting and its closely related problem, conic fit-
ting. It will be shown that the direct specific least-square fitting of
ellipses has, up to now, not been solved.

Before reviewing the literature on general conic fitting, we
will introduce a statement of the problem that allows us to unify
several approaches under the umbrella of constrained least
squares. Let us represent a general conic by an implicit second
order polynomial:

F(a, x) = a ¼ x = ax2 + bxy + cy2 + dx + ey + f = 0,             (1)

where a = [a b c d e f]T and x = [x2 xy y2 x y 1]T. F(a; xi) is called the
“algebraic distance” of a point (x, y) to the conic F(a; x) = 0. The
fitting of a general conic may be approached by minimizing the
sum of squared algebraic distances
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of the curve to the N data points xi [7]. In order to avoid the trivial
solution a = 06, and recognizing that any multiple of a solution a
represents the same conic, the parameter vector a is constrained in
some way. Many of the published algorithms differ only in the
form of constraint applied to the parameters. For instance, many
authors suggest iai2 = 1, Rosin [14] and Gander [5] impose a + c = 1
while Rosin also investigates f = 1 [14]. Taubin’s approximate
square distance [17] may also be viewed as the quadratic con-
straint iNai2 = 1 where N is the Jacobian [¶F(a; x1) ¡ ¶F(a; xN)]T.

Note that these constraints are all either linear, of the form c ¼ a
= 1 or quadratic, constraining aTCa = 1 where C is a 6 � 6 constraint
matrix.

In a seminal work, Bookstein [1] showed that if a quadratic
constraint is set on the parameters (e.g., to avoid the trivial solu-
tion a = 06) the minimization (2) can be solved by considering rank-
deficient generalized eigenvalue system:

DTDa = lCa,                                            (3)

where D = [x1 x2 L xn]
T is called the design matrix and C is the ma-

trix that expresses the constraint.
A simple constraint is iai = 1 but Bookstein used the algebraic

invariant constraint a b c2 1
2

2 2 1+ + = ; Sampson [16] presented an
iterative improvement to Bookstein method that replaces the alge-
braic distance (2) with a better approximation to the geometric
distance, which was adapted by Taubin [17] to turn the problem
again into a generalized eigensystem.

Despite the amount of work, direct specific ellipse fitting, how-
ever, was left unsolved. If ellipse fitting was needed, one had to
rely either on generic conic fitting or on iterative methods to
“nudge” the estimation towards ellipticity. For instance, Porrill
[12], Ellis et al. [2], and Rosin [14] use conic fitting to initialize a
Kalman filter that iteratively minimizes some error metric in order
to gather new image evidence and to reject nonellipse fits by test-
ing the discriminant b2 - 4ac < 0 at each iteration. Another iterative
algorithm is that of Haralick [7, Section 11.10.7], where the coeffi-
cients {a, b, c} are transformed into {p2, 2pq, q2 + r2} so as to keep the
conic discriminant always negative. A nonlinear minimization of
the algebraic error over the space {p, q, r, d, e, f} is performed.

In this journal, Rosin [15] reiterated this problem by stating that

ellipse-specific fitting is essentially a nonlinear problem and itera-
tive methods must always be employed for this purpose. In the
following section, we show that this is no longer true.

3 DIRECT ELLIPSE-SPECIFIC FITTING

In order to fit ellipses specifically while retaining the efficiency
of solution of the linear least-squares problem (2), we would like
to constrain the parameter vector a so that the conic that it repre-
sents is forced to be an ellipse. The appropriate constraint is well
known, namely, that the discriminant b2 - 4ac be negative. How-
ever, this constrained problem is difficult to solve in general as
the Kuhn-Tucker conditions [13] do not guarantee a solution. In
fact, we have not been able to locate any reference regarding the
minimization of a quadratic form subject to such a nonconvex
inequality.

Although the imposition of this inequality constraint is difficult
in general, in this case we have the freedom to arbitrarily scale the
parameters so we may simply incorporate the scaling into the con-
straint and impose the equality constraint 4ac - b2 = 1 [4]. This is a
quadratic constraint which may be expressed in the matrix form
aTCa = 1 as
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Now, following Bookstein [1], the constrained ellipse fitting prob-
lem reduces to

minimizing E = iDai2 subject to the constraint aTCa = 1           (5)

where the design matrix D is defined as in the previous section.
Introducing the Lagrange multiplier l and differentiating, we

arrive at the system of simultaneous equations1
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This may be rewritten as the system

Sa = lCa                                          (7)

aTCa = 1                                               (8)

where S is the scatter matrix DTD. This system is readily solved by
considering the generalized eigenvectors of (7). If (li, ui) solves (7),
then so does (li, mui) for any m and from (8) we can find the value
of mi as m i i

T
i

2 1u Cu = , giving
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.                                       (9)

Finally, setting $a ui i i= m  solves (6).
We note that the solution of the eigensystem (7) gives six eigen-

value-eigenvector pairs (li, ui). Each of these pairs gives rise to a
local minimum if the term under the square root of (9) is positive.
In general, S is positive definite, so the denominator u Sui

T
i  is

positive for all ui. Therefore, the square root exists if li > 0, so any
solutions to (6) must have positive generalized eigenvalues.

Now we show that the minimization of iDai2 subject to 4ac - b2

= 1 yields exactly one solution, which corresponds, by virtue of the
constraint, to an ellipse [11]. For the demonstration, we will re-
quire Lemma 1.

1. Note that the method of Lagrange multipliers is not valid when the
gradient of the constraint function becomes zero. In (5), this means Ca = 0,
but then aTCa = 0, so the constraint is violated and there is no solution.
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LEMMA 1. The signs of the generalized eigenvalues of Su = lCu,
where S ³ Rn�n is positive definite and C ³ Rn�n is symmetric, are
the same as those of the constraint matrix C, up to permutation of
the indices.

PROOF. Let us define the spectrum s(S) as the set of eigenvalues of
S and, analogously, s(S, C) the set of generalized eigenvalues of
(7). Let the inertia i(S) be defined as the set of signs of s(S), and
let i(S, C) analogously be the inertia of s(S, C). Then, the lemma
is equivalent to proving that i(S, C) = i(C). As S is positive defi-
nite, it may be decomposed as Q2 for symmetric Q, allowing us
to write Su = lCu as Q2u = lCu. Now, substituting v = Qu and
premultiplying by Q-1 gives v = lQ-1CQ-1v so that s(S, C) =
s(Q-1CQ-1)-1 and thus i(S, C) = i(Q-1CQ-1). From Sylvester’s
Law of Inertia [18], we have that for any symmetric and non-
singular X, i(S) = i(XTSX). Therefore, substituting X = XT = Q-1,
we have i(C) = i(Q-1CQ-1) = i(S, C). o

We can now state Theorem 1.

THEOREM 1. The solution of the conic fitting problem (5) subject to the
constraint (4) admits exactly one elliptical solution corresponding to
the single positive generalized eigenvalue of  (7).

PROOF. Since the eigenvalues of C are {-2, -1, 2, 0, 0, 0}, from
Lemma 1 we have that (7) has exactly one positive eigenvalue li

> 0, giving the unique solution $a u= m i i  to (6). As DTD is posi-
tive semidefinite, the constrained problem has a minimum,
which must satisfy (6), and we conclude that $a  solves the con-
strained problem. o

This unique solution has also some desirable properties in el-
lipse fitting:

�� low eccentricity bias: An eigenvector of the eigensystem (7)

is a local minimizer of the Rayleigh quotient a Sa

a Ca

T

T . In this case,

the implicit normalization by b2 - 4ac turns singular for b2

- 4ac = 0, which is a parabola. Since the minimization
tends to “pull” the solution away from singularities [14],
the unique elliptical solution tends to be biased towards
low eccentricity.

�� affine invariance: Let us represent the conic as xÁAx + xÁb +
c = 0. Under an affine transform H the leading form becomes
A� = HÁAH, so that |A�| = |H�|2|A|. Being the Rayleigh

quotient that we minimize a SaT

A
, the new error measure is a

Fig. 1. (a) Fits to hand-input data to illustrate the ellipse specificity of the method. (b) Experiments with noisy parabolic data (after Sampson). En-
coding is BOOK: dotted; GAND: dashed; TAUB: dash-dot; B2AC: solid.

Fig. 2. (a) Variation of center position for increasing noise level when fitting to a whole ellipse. (b) Fits to arc of ellipse with increasing noise level.
Notice how B2AC presents a much more graceful degradation with respect to noise.
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scalar multiple of the original one and thus the new mini-
mizer is transformed by H, which proved the affine invari-
ance of the method.

4 EXPERIMENTAL RESULTS

This section describes some experiments that illustrate the inter-
esting features of the new method and its noise performance com-
pared to some of the least-squares fitting method reviewed in Sec-
tion 2. In this short paper, we are not able to present a large body
of results—which can be found in abundance in [3]—so we limited
ourselves to those that are the most representative.

All experiments were conducted using the Matlab system [10].
Eigensystems are solved using the underlying EISPACK routines.
We shall use the following abbreviations:

�� LIN = linear method;
�� BOOK = Bookstein method [1];
�� TAUB = Taubin method [17];
�� GAND = Gander method [5];
�� BIAS = Kanatani bias-corrector method [8]; and finally
�� B2AC = our new method.

4.1 Ellipse-Specificity
Despite the theoretical proof of the algorithm’s ellipse specificity, it is
instructive to observe its performance on some real data, of which Fig.
1a provides examples with hand-drawn datasets. The results of the
method are superimposed on those of Bookstein and Gander. Dataset
A is almost elliptical and indistinguishable fits were produced. The
other sets exhibit varying degrees of nonellipticity and illustrate the
potential of the method for coarse bounding of generic 2D data.

4.2 Low-Eccentricity Bias
Fig. 1b shows three experiments designed after Sampson [16] (fol-
lowing [6]) and basically consists of the same parabolic data but
with different realizations of added isotropic Gaussian noise (s =

7% of data spread). Sampson’s iterative fit produced an ellipse
with low eccentricity that was qualitatively similar to the one pro-
duced by our direct method (solid lines) but the total cost of our
method is the same as that of acquiring his initial estimate. As
anticipated in the previous section, the low eccentricity bias of our
method is most evident in Fig. 1b when compared to Bookstein’s,
Taubin’s, and Gander’s results. It must be again remarked that this
is not surprising, because those methods are not ellipse-specific,
whereas ours is.

4.3 Noise Sensitivity
In this section, we describe some experiments concerning the noise
performance of our method compared to others.

The first experiment is concerned with the stability of the esti-
mated ellipse center with increasing noise levels. We consider a
whole ellipse centered at the origin of semi-axis 1 and 0.5 and ro-
tated by 40 degrees. The sampled ellipse was corrupted with noise
(from 2-3 to 23) for 100 runs and the distance between the true el-
lipse center and the center of the conic returned by the fitting algo-
rithm was recorded. Returned hyperbolae were included for the
other algorithms. Fig. 2a shows the 90th percentile error in the
centers as a function of noise level. At low noise levels (s < 0.5), all
algorithms can be seen to perform similarly, while at high levels,
only the new (B2AC) algorithm degrades gracefully.

The good performance of the presented method is more evident
when the data is occluded. In the second experiment, shown in
Fig. 2b, increasing level of isotropic Gaussian was added to points
on a given elliptical arc. The standard deviation of the noise varies
from 3% in the leftmost column to 20% of data spread in the
rightmost column; the noise has been set to a relatively high level
because the performance of the three algorithms is substantially
the same at low noise level of precise elliptical data. The top row
shows the results for the method proposed here. Although, as ex-
pected, the fitted ellipses shrink with increasing levels of noise [8]
(in the limit, the elliptical arc will look like a noisy line), it can be
noticed that the ellipse dimension decreases smoothly with the
noise level: This is an indication of well-behaved fitting. This
shrinking phenomenon is evident also with the other methods but
presents itself more erratically. Many more quantitative experi-
ments on performance with occluded data can be found in [3].

The last experiment that we show here is perhaps the most in-
teresting (although we have not seen it in related papers) and is
concerned with assessing stability to different realizations of noise
with the same variance. It is very desirable that an algorithm’s per-
formance be affected only by the noise level, and not by a particu-
lar realization of the noise. Fig. 3 shows five different runs for s =
0.1, and the results of our method, Gander’s method, and Taubin’s
method are given. This and similar experiments (see [11], [3]) show
that our method has a greater stability to noise than the other
methods.Fig. 4. Simple six-line Matlab implementation of the ellipse fitting method.

Fig. 3. Stability experiments for different runs with same noise variance (10% of data spread). The ellipse-specific method shows a remarkable stability.
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5 CONCLUSION

In this paper, we have presented a least squares fitting method
which is specific to ellipses and direct at the same time. Previous
methods were either not ellipse-specific or were iterative.

We have theoretically demonstrated that our method uniquely
yields elliptical solutions that, under the normalization 4ac - b2 = 1,
minimize the sum of squared algebraic distances from the points
to the ellipse.

Experimental results illustrate the advantages conferred by the
ellipse-specificity in terms of occlusion and noise sensitivity. The
stability properties widen the scope of application of the algorithm
from ellipse fitting to cases where the data are not strictly elliptical
but need to be minimally represented by an elliptical “blob.”

In our view, the method presented here offers the best trade-off
between speed and accuracy for ellipse fitting, and its uniqueness
property makes it also extremely robust to noise and usable in
many applications, especially in industrial vision. In cases where
more accurate results are required, this algorithm provides an ex-
cellent initial estimate.

Its simplicity is demonstrated by the inclusion in Fig. 4 of a com-
plete six-line implementation in Matlab. (An interactive Java demon-
stration is available at http://vision.dai.ed.ac.uk/maurizp/ElliFitDemo/demo.html.)

Future work includes the incorporation of the algorithm into a
bias-correction algorithm based on that of Kanatani [8]. We note
also that the algorithm can be trivially converted to a hyperbola-
specific fitter, and a variation may be used to fit parabolae.
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