next up previous
Next: About this document ... Up: Uncalibrated Euclidean Reconstruction Previous: Varying intrinsic parameters

Bibliography

1
M. Armstong, A. Zisserman, and P. Beardsley.
Euclidean structure from uncalibrated images.
In British Machine Vision Conference, pages 509-518, 1994.

2
S. Avidan and A. Shashua.
Threading fundamental matrices.
In Proceedings of the European Conference on Computer Vision, pages 124-140, University of Freiburg, Germany, 1998.

3
P. Beardsley, A. Zisserman, and D. Murray.
Sequential update of projective and affine structure from motion.
International Journal of Computer Vision, 23(3):235-259, 1997.

4
S. Bougnoux.
From projective to Euclidean space under any practical situation, a criticism of self-calibration.
In Proceedings of the IEEE International Conference on Computer Vision, pages 790-796, Bombay, 1998.

5
O. Faugeras.
What can be seen in three dimensions with an uncalibrated stereo rig?
In Proceedings of the European Conference on Computer Vision, pages 563-578, Santa Margherita L., 1992.

6
O. Faugeras.
Three-Dimensional Computer Vision: A Geometric Viewpoint.
The MIT Press, Cambridge, MA, 1993.

7
O. Faugeras.
Stratification of 3-D vision: projective, affine, and metric representations.
Journal of the Optical Society of America A, 12(3):465-484, 1994.

8
O. Faugeras and S. Maybank.
Motion from point matches: multiplicity of solutions.
International Journal of Computer Vision, 4(3):225-246, June 1990.

9
O. Faugeras, L. Robert, S. Laveau, G. Csurka, C. Zeller, C. Gauclin, and I. Zoghlami.
3-d reconstruction of urban scenes from image sequences.
Computer Vision and Image Understanding, 69(3):292-309, March 1998.

10
O.D. Faugeras, Q.T. Luong, and S.J. Maybank.
Camera self-calibration: Theory and experiments.
In Proceedings of the European Conference on Computer Vision, pages 321-334, Santa Margherita L., 1992.

11
A. Fusiello.
Uncalibrated Euclidean reconstruction: A review.
Image and Vision Computing, 18(6-7):555-563, May 2000.

12
P. Gill, W. Murray, and M. Wright.
Practical Optimization.
Academic Press, 1981.

13
R. I. Hartley.
Estimation of relative camera position for uncalibrated cameras.
In Proceedings of the European Conference on Computer Vision, pages 579-587, Santa Margherita L., 1992.

14
R. I. Hartley.
Cheirality invariants.
In Proceedings of the Image Understanding Workshop, pages 745-753, Washington, DC, April 1993. ARPA, Morgan Kaufmann.

15
R. I. Hartley.
In defence of the 8-point algorithm.
In Proceedings of the IEEE International Conference on Computer Vision, 1995.

16
R. I. Hartley.
Kruppa's equations derived from the fundamental matrix.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):133-135, February 1997.

17
R.I. Hartley.
Euclidean reconstruction from uncalibrated views.
In Joseph Mundy and Andrew Zisserman, editors, Applications of Invariance in Computer Vision, volume 825 of Lecture Notes in Computer Science, pages 237-256. Springer-Verlag, 1993.

18
A. Heyden.
Reconstruction from image sequences by means of relative depths.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1058-1063, 1995.

19
A. Heyden.
Projective structure and motion from image sequences using subspace methods.
In Scandinavian Conference on Image Analysis, 1997.

20
A. Heyden and K. Åström.
Euclidean reconstruction from constant intrinsic parameters.
In Proceedings of the International Conference on Pattern Recognition, pages 339-343, Vienna, 1996.

21
A. Heyden and K. Åström.
Euclidean reconstruction from image sequences with varying and unknown focal length and principal point.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 438-443, Puerto Rico, 1997.

22
A. Heyden and K. Åström.
Minimal conditions on intrinsic parameters for Euclidean reconstruction.
In Proceedings of the Asian Conference on Computer Vision, Hong Kong, 1998.

23
B.K.P. Horn.
Relative orientation revisited.
Journal of the Optical Society of America A, 8(10):1630-1638, October 1991.

24
T. S. Huang and A. N. Netravali.
Motion and structure from feature correspondences: A review.
Proceedings of IEEE, 82(2):252-267, 1994.

25
T.S. Huang and O.D. Faugeras.
Some properties of the E matrix in two-view motion estimation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(12):1310-1312, December 1989.

26
E. Kruppa.
Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung.
Sitz.-Ber. Akad. Wiss., Wien, math. naturw. Kl., Abt. IIa., 122:1939-1948, 1913.

27
H. C. Longuet-Higgins.
A computer algorithm for reconstructing a scene from two projections.
Nature, 293(10):133-135, September 1981.

28
Q.-T. Luong and O. Faugeras.
Self-calibration of a moving camera from point correspondences and fundamental matrices.
International Journal of Computer Vision, 22(3):261-289, 1997.

29
Q.-T. Luong and O. D. Faugeras.
The fundamental matrix: Theory, algorithms, and stability analysis.
International Journal of Computer Vision, 17:43-75, 1996.

30
Q.-T. Luong and T. Viéville.
Canonical representations for the geometries of multiple projective views.
Computer Vision and Image Understanding, 64(2):193-229, 1996.

31
S. J. Maybank and O. Faugeras.
A theory of self-calibration of a moving camera.
International Journal of Computer Vision, 8(2):123-151, 1992.

32
P. S. Maybeck.
Stochastic Models, Estimation and Control, volume 1.
Academic Press, New York, NY, 1979.

33
P.R.S. Mendonça and R. Cipolla.
A simple techinique for self-calibration.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages I:500-505, 1999.

34
R. Mohr and E. Arbogast.
It can be done without camera calibration.
Pattern Recognition Letters, 12:39-43, 1991.

35
A. P. Morgan, A. J. Sommese, and L. T. Watson.
Finding all isolated solutions to polynomial systems using hompack.
ACM Trans. Math. Software, 15:93-122, 1989.

36
M. Pollefeys, R. Koch, and L. Van Gool.
Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters.
In Proceedings of the IEEE International Conference on Computer Vision, pages 90-95, Bombay, 1998.

37
M. Pollefeys and L. Van Gool.
A stratified approach to metric self-calibration.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 407-412, Puerto Rico, 1997.

38
M. Pollefeys, L. Van Gool, and A. Oosterlinck.
The modulus constraint: a new constraint for self-calibration.
In Proceedings of the International Conference on Pattern Recognition, pages 349-353, Vienna, 1996.

39
L. Robert and O. Faugeras.
Relative 3-D positioning and 3-D convex hull computation from a weakly calibrated stereo pair.
Image and Vision Computing, 13(3):189-197, 1995.

40
C. Rothwell, A. Zisserman, J. Mundy, and D. Forsyth.
Efficient model library access by projectively invariant indexing functions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1992.

41
J. G. Semple and G. T. Kneebone.
Algebraic projective geometry.
Oxford University Press, 1952.

42
A. J. Sommese and C. W. Wampler.
Numerical algebraic geometry.
In J. Renegar, M. Shub, and S. Smale, editors, Mathematics of Numerical Analysis: Real Number Algorithms, volume 32 of Lectures in Applied Mathematics, pages 749-763. Park City, Utah, 1996.

43
G. Sparr.
An algebraic-analytic method for reconstruction from image correspondences.
In Scandinavian Conference on Image Analysis, pages 274-281, 1991.

44
G. Sparr.
Simultaneous reconstruction of scene structure and camera locations from uncalibrated image sequences.
In Proceedings of the International Conference on Pattern Recognition, 1996.

45
P. Sturm and B. Triggs.
A factorization based algorithm for multi-image projective structure and motion.
In Proceedings of the European Conference on Computer Vision, pages 709-720, Cambridge, UK, 1996.

46
B. Triggs.
Autocalibration and the absolute quadric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 609-614, Puerto Rico, 1997.

47
H.P. Trivedi.
Can multiple views make up for lack of camera registration?
Image and Vision Computing, 6(1):29-32, 1988.

48
T. Ueshiba and F. Tomita.
A factorization method for projective and Euclidean reconstruction from multiple perspective views via iterative depth estimation.
In Proceedings of the European Conference on Computer Vision, pages 296-310, University of Freiburg, Germany, 1998.

49
T. Viéville, C. Zeller, and L. Robert.
Using collineations to compute motion and structure in an uncalibrated image sequence.
International Journal of Computer Vision, 20(3):213-242, 1996.

50
C. Zeller and O. Faugeras.
Camera self-calibration from video sequences: the Kruppa equations revisited.
Research Report 2793, INRIA, February 1996.

51
Z. Zhang.
Determining the epipolar geometry and its uncertainty: A review.
International Journal of Computer Vision, 27(2):161-195, March/April 1998.



Andrea Fusiello
2000-03-16