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Abstract

One of the monolithic goals of computer vision is to automatically interpret general digital images or

videos of arbitrary scenes. However, the amount of visual information available to a vision system is

enormous and in general it is computationally impossible to process all of this information bottom-

up. To ensure that the process has tractable computational properties, visual attention plays a crucial

role in terms of selection of visual information, allowing monitoring objects or regions of visual space

and select information from them for report, recognition, etc. This dissertation discusses one small

but critical slice of a cognitive computer vision system, that of visual attention. In contrast to the

attention mechanisms used in most previous machine vision systems, which drive attention based on

the spatial location hypothesis, in this work we propose a novel model of object-based visual attention,

in which the mechanisms which direct visual attention are object-driven. Considering the temporal

dynamics associated with attention-dependent motion, an attention-based visual motion framework is

also proposed. Finally, since a vision system will always have a set of tasks that defines the purpose of

the visual process, a top-down approach is proposed to define the competition of the visual attention

occurring not only within an object but also between objects, and illustrated in the framework of a

surveillance system.
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1.1 Introduction

While event detection and localization of conspicuous visual events is indispensable, recognizing and

understanding visual behavior is essential for complete dynamic scene analysis in applications such as

visual surveillance and monitoring [76, 71], yet unsolved problems. One of the essential tasks for an

automated vision system is to detect conspicuous, or informative activity, among other activities. By

autonomous events, we imply that both the number of meaningful events and their whereabouts in the

scene are automatically detected and localized in the scene, rather than manually labeled.

To state the problem in simple terms, given a sequence of images with one or more persons performing

an activity, can a system be designed in such a way that it can automatically recognize what activity

is being or was performed? Several survey papers have appeared reporting on research on machine

recognition of human activities. Most notably among them are the following. Aggarwal and Cai [1]

discuss three important subproblems that together form a complete action recognition system - extraction

of human body structure from images, tracking across frames, and action recognition. Cedras and Shah [9]

present a survey on motion-based approaches for recognition, as opposed to structure-based approaches.

They argue that motion is a more important cue for action recognition than the structure of the human

body. Gavrila [21] presented a survey focused mainly on tracking of hands and humans via 2-D or 3-D

models and a discussion of action recognition techniques. More recently, Moeslund et al. [47] presented

a survey of problems and approaches in human motion capture including human model initialization,

tracking, pose estimation, and activity recognition. These surveys discuss thoroughly lower level modules

of detection and tracking. Recently, Turaga et al. [72] present a survey focusing exclusively on approaches

for recognition of action and activities from video.

Machine vision-based activity recognition systems typically follow a hierarchical approach. At the

lower levels are modules such as background-foreground segmentation, tracking and object detection. At

the midlevel are primitive action recognition modules. At the high level are the reasoning engines that

encode the activity semantics based on the previous levels’ action primitives. It is clear that we need to

define and distinguish between (primitive) action and activity.

The terms ”action” and ”activity” are frequently used interchangeably in the computer vision lit-

erature. The term ”action” refers to simple motion patterns usually executed by a single person and

typically lasting for a short duration of time. On the other hand, ”activity” refers to the complex se-

quence of actions performed by several humans who could be interacting in a constrained manner. They

are typically characterized by much longer temporal durations. In [72], these definitions conceptualize

two levels of complexity to study the problem and provide a starting point to organize the numerous

approaches that have been proposed.

It is clear that this is not the only possible viewpoint on human activity. Defining concepts such

as ”action” and ”activity” is a direct result from the straightforward classification of events as being

”simple” or being ”complex”. However, one may note that simple and complex events are not separated

by a hard boundary. There is a significant gray area between these two extremes, as an event that is

primitive from one perspective can be complex from another one. We can regard walking from one point

to another as a simple action in a larger activity. But from another point of view, walking is a complex

action consisting of repetitions of moving one leg forward and then moving the other leg forward, and

the decomposition can continue even more. However, the level of decomposition is also limited by the

detection algorithms, and their level of precision in generating events.
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1.1.1 Event Analysis: State of the Art

In the literature, a variety of approaches have been proposed for the detection of events in video sequences.

Moreover, this multitude of approaches has been categorized in several ways. In this work, we tend to

follow the proposed categorization of approaches for modeling human activity in video of [72] and [29].

Most of these approaches can be arranged into two categories based on the semantic significance of

their representations. This distinction is important, since it determines whether humans can exploit the

representation for communication. Approaches where representations do not take into account semantic

meaning do not lend themselves directly to interpretation or interface to humans.

Following the earlier proposed conceptual distinction between ”action” and ”activity”, Figure 1.1

overviews the possible approaches.

Figure 1.1: Overview of approaches for action and activity recognition. Figure taken from [72]

Approaches for modeling actions are categorized into three major classes - nonparametric, volumetric,

and parametric time-series approaches.

Nonparametric approaches

Nonparametric approaches typically extract a set of features from each frame of the video. The features

are then matched to a stored template. For example,

• [5, 6] propose ”temporal templates” as models for actions, by aggregating subtracted motion blobs

into a single static image. As such, ”motion energy image” (MEI) (equal weights to all frames in

sequence) and ”motion history image” (MHI) (decaying weights to images in sequence with the

highest weight for the most recent image) comprise together a template for a given action. From

the templates, translation, rotation, and scale invariant Hu moments [34] are extracted and used for

recognition. For several simple action classes, such as ”sitting down”, ”bending”, and other aerobic

postures, MEI and MHI possess sufficient discriminative power. However, for complex activities,

this discriminative ability is lost due to overwriting the motion history.

• [78] represents actions as 3-D objects induced by stacking together tracked 2-D object contours.

A sequence of 2-D contours in (x, y) space can be treated as an object in the joint (x, y, t) space.
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Similar to this approach, in [25] proposed a stack of blobs instead of contours which create an

(x, y, t) binary space-time (ST) volume. From this ST volume 3-D shape descriptors are extracted.

Because these approaches require careful segmentation of background and foreground, they are

limited in applicability to fixed camera settings.

Volumetric approaches

Volumetric approaches consider video as a 3-D volume of pixel intensities and extend standard image

features such as scale-space extrema, spatial filter responses etc. to the 3-D case.

• Spatiotemporal filtering approaches [14, 79] are based on filtering a video volume using a large filter

bank. The responses of the filter bank are further processed to derive action specific features.

• Several approaches have been proposed that consider a video volume as a collection of local parts,

where each part consists of some distinctive motion pattern. [43] proposed a spatiotemporal gener-

alization of the well-known Harris interest point detector, widely used in object recognition. Similar

approaches are [16, 51]. In most of these approaches, the detection of the parts is based on linear

operations such as filtering and spatio-temporal gradients, hence the descriptors are sensitive to

changes in appearance, noise, occlusions, etc.

• As opposed to part-based approaches, researchers have also investigated matching of videos by

matching subvolumes between a video and a template. Inspired by the success of Haar-type fea-

tures or ”box features” in object detection [75], [42] extended this framework to 3-D. Subvolume

approaches are susceptible to changing backgrounds, but are more robust to noise and occlusions.

Parametric time-series approaches

Parametric time-series approaches include hidden Markov models (HMMs), linear dynamical systems

(LDSs), etc. The parametric approaches are better suited for more complex actions that are temporally

extended.

• One of the most popular state-space models is the hidden Markov Model. In the discrete HMM

formalism, the state space is considered to be a finite set of discrete points. The temporal evolution

is modeled as a sequence of probabilistic jumps from one discrete state to the other. An excellent

detailed explanation of HMMs and its associated three problems - inference, decoding, and learning

- can be found in [60]. HMMs have been successfully applied for gesture recognition [77, 68], human

gait [40, 44], interacting agents performing an action (coupled HMMs) [7]. HMMs are efficient for

modeling time-sequence data and are useful both for their generative and discriminative capabilities.

HMMs are well suited for tasks that require recursive probabilistic estimates or when accurate start

and end times for action units are unknown. However, their utility is restricted to relatively simple

and stationary temporal patterns, most significantly, due to the assumption of Markovian dynamics

and the time-invariant nature of the model.

• Linear dynamical systems are a more general form of HMMs where the state space is not constrained

to be a finite set of symbols but can take on continuous values in Rk where k is the dimensionality of

the state space. The simplest form of LDS is the first-order time invariant Gauss-Markov processes,
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described by
x(t) = Ax(t− 1) + w(t), w ∼ N(0, Q)

y(t) = Cx(t− 1) + v(t), v ∼ N(0, R)

where x ∈ Rd is the d-dimensional state vector and y ∈ Rn is the n-dimensional observation vector

with d ¿ n. w and v are the process and observation noise, respectively, which are Gaussian

distributed with zero-means and covariance matrices Q and R, respectively. Examples found in

literature using LDSs are [45, 10, 74, 4]. Like HMMs, LDSs are also based on assumptions of

Markovian dynamics and conditionally independent observations, and as such not applicable to

nonstationary actions.

• While time-invariant HMMs and LDSs are efficient modeling and learning tools, they are restricted

to linear and stationary dynamics. The most general form of a non-linear (time-varying) LDS is

given by
x(t) = A(t)x(t− 1) + w(t), w ∼ N(0, Q)

y(t) = C(t)x(t− 1) + v(t), v ∼ N(0, R)

where model parameters A and C are allowed to vary with time. To tackle such complex dynamics,

a popular approach is to model the process using switching linear dynamical systems (SLDSs) or

jump linear systems (JLSs). Approaches in literature are [52, 55, 53]. Though the SLDS framework

has greater modeling and descriptive power than HMMs and LDSs, learning and inference in SLDS

are much more complicated, often requiring approximate methods. In practice, determining the

appropriate number of switching states is challenging and often requires large amounts of training

data or extensive hand tuning.

Most activities of interest in applications such as surveillance and content-based indexing involve sev-

eral actors, who interact not only with each other, but also with contextual entities. The approaches

discussed so far are mostly concerned with modeling and recognizing actions of a single actor. Mod-

eling a complex scene, the inherent structure and semantics of complex activities require higher level

representation and reasoning methods.

Graphical Models

• Belief Networks: A Bayesian network (BN) [56] is a graphical model that encodes complex condi-

tional dependencies between a set of random variables that are encoded as local conditional prob-

ability densities (CPD). Dynamic belief networks (DBNs) are a generalization of the simpler BNs

by incorporating temporal dependencies between random variables. DBNs encode more complex

conditional dependence relations among several random variables as opposed to just one hidden

variable as in a traditional HMM. Examples in literature are [8, 54, 36]. Usually the structure of

the DBN is provided by a domain expert. However, this is difficult in real-life systems where there

are a very large number of variables with complex interdependencies. To address this issue, [24]

presented a DBN framework where the structure of the network is discovered automatically using

Bayesian information criterion [41, 64]. Though DBNs are more general than HMMs by considering

dependencies between several random variables, the temporal model is usually Markovian as in the

case of HMMs. Thus, only sequential activities can be handled by the basic DBN model. Devel-

opment of efficient algorithms for learning and inference in graphical models (cf., [39]) have made
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them popular tools to model structured activities. Methods to learn the topology or structure of

BNs from data [20] have also been investigated in the machine learning community. However, to

learn the local CPDs for large networks requires very large amounts of training data or extensive

hand-tuning by experts both of which limit the applicability of DBNs in large scale settings.

• Petri Nets: Petri nets were defined by Petri [58] as a mathematical tool for describing relations

between conditions and events. Petri nets are particularly useful to model and visualize behaviors

such as sequencing, concurrency, synchronization, and resource sharing [15, 49]. Petri nets are

applied in [23] for querying surveillance videos by mapping user queries to Petri nets. However,

these approaches are based on deterministic Petri nets. In order to deal with uncertainty in low-

level modules as is usually the case with trackers and object detectors, and with allowed deviations

from the expected sequence steps in real-life human activity, the concept of probabilistic Petri net

(PPN) is proposed in [3]. Though Petri nets are an intuitive tool for expressing complex activities,

they suffer from the disadvantage of having to manually describe the model structure. The problem

of learning the structure from training data has not been formally addressed yet.

• Other Graphical Models: Other graphical models have been proposed to deal with the drawbacks

in DBNs - most significantly, the limitation to sequential activities. Graphical models that specifi-

cally model more complex temporal relations such as sequentiality, duration, parallelism, synchrony,

etc. have been proposed in the DBN framework. Examples include past-now-future (PNF) net-

work [59], propagation nets using partially ordered temporal intervals [67, 66], modeling activity as

subsequences of event labels represented by Suffix-trees [30].

Syntactic Approaches

• Grammars: Grammars express the structure of a process using a set of production rules. To draw a

parallel to grammars in language modeling, production rules specify how sentences (activities) can

be constructed from words (activity primitives), and how to recognize if a sentence (video) conforms

to the rules of a given grammar (activity model). The context-free grammar (CFG) formalism to

model and recognize composite human activities and multiperson interactions is introduced in [62].

Once the rules of a CFG have been formulated, efficient algorithms to parse them exist [17, 2], which

have made them popular in real-time applications. Because deterministic grammars expect perfect

accuracy in the lower levels, they are not suited to deal with errors in low-level tasks such as tracking

errors and missing observations. In complex scenarios involving several agents requiring temporal

relations that are more complex than just sequencing, such as parallelism, overlap, synchrony, it

is difficult to formulate the grammatical rules manually. Learning the rules of the grammar from

training data is a promising alternative, but it has proved to be extremely difficult in the general

case [31].

• Stochastic Grammars: Algorithms for detection of low-level primitives are frequently probabilistic

in nature. Thus, stochastic context-free grammars (SCFGs), which are a probabilistic extension of

CFGs, are suitable for integration with real-life vision modules. SCFGs are used in [37, 48]. In

many cases, it is desirable to associate additional attributes or features to the primitive events.

Probabilistic attribute grammars, with greater expressive power than traditional grammars, have

been used in [38]. While SCFGs are more robust than CFGs to errors and missed detections in the
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input stream, they share many of the temporal relation modeling limitations of CFGs as discussed

above.

Logic-Based Approaches

Logic-based methods rely on formal logical rules to describe common sense domain knowledge to describe

activities. Logical rules are useful to express domain knowledge as input by a user or to present the results

of high-level reasoning in an intuitive and human-readable format. Declarative models [61] describe all

expected activities in terms of scene structure, events, etc. The model for an activity consists of the

interactions between the objects of the scene. Medioni et al. [46] propose a hierarchical representation to

recognize a series of actions performed by a single agent. Symbolic descriptors of actions are extracted

from low-level features through several mid-level layers. Next, a rule-based method is used to approximate

the probability of occurrence of a specific activity by matching the properties of the agent with the

expected distributions (represented by a mean and a variance) for a particular action. In a later work,

Hongeng et al. [33] extended this representation by considering an activity to be composed of several action

threads. Each action thread is modeled as a stochastic finite state automaton. Constraints between the

various threads are propagated in a temporal logic network. Shet et al. [65] propose a system that relies

on logic programming to represent and recognize high-level activities. Low-level modules are used to

detect primitive events. The high-level reasoning engine is based on Prolog and recognizes activities,

which are represented by logical rules between primitives. These approaches do not explicitly address

the problem of uncertainty in the observation input stream. To address this issue, a combination of

logical and probabilistic models was presented in [70], where each logical rule is represented as first-order

logic formula. Each rule is further provided with a weight, where the weight indicates a belief in the

accuracy of the rule. Inference is performed using a Markov-logic network. While logic-based methods

are a natural way of incorporating domain knowledge, they often involve expensive constraint satisfaction

checks. Further, it is not clear how much domain knowledge should be incorporated in a given setting

- incorporating more knowledge can potentially make the model rigid and nongeneralizable to other

settings. Further, the logic rules require extensive enumeration by a domain expert for every deployment.

Knowledge-Based Approaches: Ontologies

In most practical deployments that use any of the aforementioned approaches, symbolic activity definitions

are constructed in an empirical manner, for example, the rules of a grammar or a set of logical rules are

specified manually. Though empirical constructs are fast to design and even work very well in most cases,

they are limited in their utility to specific deployments for which they have been designed. Hence, there is a

need for a centralized representation of activity definitions or ontologies for activities that are independent

of algorithmic choices. Ontologies standardize activity definitions, allow for easy portability to specific

deployments, enable interoperability of different systems, and allow easy replication and comparison of

system performance.

Ontologies are tools for structuring knowledge [11]. An ontology may be defined as the specification

of a representation vocabulary for a shared domain of discourse which may include definitions of classes,

relations, functions and other objects [26]. The terms of the ontology structure are called meta-concepts

(e.g. event) and their instances (e.g. the ”stand-up” event) are the concepts for a particular ontology.



8 Chapter 1. Semantic Video Interpretation Framework

Definition. An object ontology is a structure

O := (D,≤D,R, σ,≤R)

consisting of: (i) Two disjoint sets D and R whose elements d and r are called respectively, intermediate

level descriptors (e.g. intensity, position, etc.) and relation identifiers (e.g. relative position). To simplify

the terminology, relation identifiers will often be called relations in the sequel. The elements of set D are

often called concept identifiers or concepts in the literature. (ii) A partial order ≤D on D, called concept

hierarchy or taxonomy (e.g. luminance is a subconcept of intensity). (iii) A function σ : R → D+ called

signature; σ(r) = (σ1,r, σ2,r, ...σ∑
,r), σi,r ∈ D and |σ(r)| ≡ ∑

denotes the number of elements of D on

which σ(r) depends. (iv) A partial order ≤R on R, called relation hierarchy, where r1 ≤R r2 implies

|σ(r1)| = |σ(r2)| and σi,r1 =D σi,r2 for each 1 ≤ i ≤ |σ(r1)|.
For example, the signature of relation r relative position is by definition σ(r) = (position, position),

indicating that it relates a position to a position; |σ(r)| = 2 denotes that r involves two elements of set

D. Both the intermediate-level position descriptor values and the underlying low-level descriptor values

can be employed by the relative position relation.

Several researchers have proposed ontologies for specific domains of visual surveillance. For example,

Chen et al. [13] proposed an ontology for analyzing social interaction in nursing homes, Hakeem et al. for

classification of meeting videos [28], and Georis et al. [22] for activities in a bank monitoring setting. To

consolidate these efforts and to build a common knowledge base of domain ontologies, the Video Event

Challenge Workshop was held in 2003. As a result of this workshop, ontologies have been defined for six

domains of video surveillance [27]: 1) perimeter and internal security; 2) railroad crossing surveillance; 3)

visual bank monitoring; 4) visual metro monitoring; 5) store security; and 6) airport-tarmac security. The

workshop also led to the development of two formal languages-the video event representation language

(VERL) [32, 19], which provides an ontological representation of complex events in terms of simpler

subevents, and the video event markup language (VEML), which is used to annotate VERL events in

videos. Though ontologies provide concise high-level definitions of activities, they do not necessarily

suggest the right ”hardware” to ”parse” the ontologies for recognition tasks.

1.1.2 Application Domains

The objective of automated video interpretation is to understand and recognize automatically behavior

evolved in the observed scene. In this section we present shortly a few application areas of vision-based

activity recognition systems.

Behavioral Biometrics Biometrics involve study of approaches and algorithms for uniquely recognizing

humans based on physical or behavioral cues. The advantage of using behavior as cue is that subject

cooperation is not necessary and it can proceed without interrupting or interfering with the subject’s

activity. Currently, the most promising example of behavioral biometrics is human gait [63].

Content-Based Video Analysis With video sharing websites experiencing relentless growth, it has

become necessary to develop efficient indexing and storage schemes to improve user experience.

This requires learning of patterns from raw video and summarizing a video based on its content.

Content-based video summarization and retrieval of consumer content such as sports videos is one

of the most commercially viable applications of this technology [12].
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Security and Surveillance Security and surveillance systems have traditionally relied on a network

of video cameras monitored by a human operator who needs to be aware of the activity in the

camera’s field of view. With recent growth in the number of cameras and deployments, the efficiency

and accuracy of human operators has been stretched. As a consequence, security agencies are

seeking vision-based solutions to assist the tasks of a human operator. Automatic recognition of

anomalies in a camera’s field of view, and querying activities of interest in a large database by

learning patterns of activity from long videos are problems that attracted attention from vision

researchers [73, 80, 69, 35].

Interactive Applications and Environments Understanding the interaction between computer and

human remains one of the enduring challenges in designing human-computer interfaces. Effective

utilization of visual cues for nonverbal communication, such as gestures, can augment this interac-

tion. Similarly, interactive environments such as smart rooms [57], that can react on user’s gestures

can benefit from vision-based methods.

Animation and Synthesis The gaming and animation industry rely on synthesizing realistic humans

and human motion. Motion synthesis finds wide use in the gaming industry where the requirement

is to produce a large variety of motions with some compromise on the quality. The movie industry in

the other hand has traditionally relied more on human animation to provide high-quality animation.

However, with improvements in algorithms and hardware [18], much more realistic motion synthesis

can be achieved. A related application is learning in simulated environments, including training of

military soldiers or firefighters.
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