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P a r t  2

SHAPE ANALYSIS

The problem of shape analysis for long time has been given constant attention in computer
vision. As a result, the field has been intensively developed over the past decades both in
theoretical and applied domains. The shape of objects is a difficult concept. A shape
parameter is a set function value of which does not depend on geometrical transformations
such as translation, rotation, size changes and reflection. Currently three main directions in
shape analysis can be observed: functional approach, set theory approach and point description. Each
of them is based on certain mathematical ideas, that is, how the objects of which the shape is
analyzed, are treated in mathematical terms. Here only two-dimensional objects or two-
dimensional images of three-dimensional objects, which can be their projections or sections,
are considered. It is assumed that the two-dimensional information is sufficient for a
reasonable characterization. Further, it is always assumed that the objects are sets in the sense
of mathematical set theory and that the sets are compact and closed in the topological sense.
Such sets are called figures. Processing of figures in sense of set theory leads to the set
theoretic approach of shape analysis. Two different topics fractal theory and simple
geometrical rations, are discussed in this chapter. An important method for characterizing
figures is the representation of their contours by functions. Such representation is possible in
many ways and it results in the functional approach of shape analysis. Having such contour
functions many results of functional analysis and differential geometry can be applied to
study the shape. An extensive overview of this approach is given in this chapter. The third
direction in shape analysis (which is not discussed here) is related to the replacement of
figures by a few points which usually lie on the contour and are defined by some geometrical
properties or have a certain physical meaning. Such 'point fields' can be analyzed, for
example, by statistical methods.
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2.1. Functional approach

The function description methods of figures are appropriate for many applications because
of their advantages over other methods such as

i)  effective data reduction: frequently only a few coefficients of the approximation
functions are needed for a rather precise form description;

ii)  a convenient description of complex forms;
iii)  an intuitive characterization of many form properties.

Of course, there are some disadvantages: the necessary choice of a reference point taken as
the origin, which often appears to be arbitrary; the complicated formulae for functions and
characteristics even for simple figures, etc. Functional representation is 'in the middle'
between the set-based and point-based ones. In practice it means that all information
available when dealing with set- or point-description methods, is also available dealing with
functional approach. Moreover, it is possible to regenerate a set representation as well as to
derive a point-based representation of a figure from its functional representation. All these
features make functional approach practical and frequently used in shape analysis.

2.1.1. Contour functions

The contour of a figure can be described by a function. There are two basic ideas to
introduce such a function:

i)  the contour of a figure can be symmetric with respect to a line; than the orthogonal
distance of the contour point from the symmetry line as a function of position on the
symmetry line can be considered as a contour function;

ii)  the contour function may be periodic, the contour itself can be considered as a periodic
function; assuming that the contour has some desirable properties such as star-shapedness
or convexity, a relatively simple contour functions, such as the radius-vector or support
functions, can be introduced, otherwise more complex contour functions, such as the
tangent-angle function or the contour itself, can be considered as contour functions.

Cross-section functions for symmetric figures

It is natural to describe the form of a symmetric figure by the cross-section function [2.1.1],
the half-breadth at x . Suppose that a symmetric figure is oriented in such a way that its
symmetry axis coincides with the x -axis of the coordinate system. Only one-half of the
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figure is considered and for each point the coordinates ( )( )x q xX,  are obtained where
( )q xX  is the half-breadth at x  (Fig. 2.1.1a).
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Fig. 2.1.1. a) definition of the cross-section function for a symmetric figure; b) problems with
the cross-section functions occur if there is more than one contour point on the line through

x  orthogonal to the symmetry axis.

Problems occur if there is more than one contour point on the line through x  orthogonal to
the symmetry axis (Fig. 2.1.1b). This ambiguity can be removed by choosing the mean
distance as the function value, or the outer contour point or by smoothing the contour. Of
course, these simplifications may destroy essential features of the contour and in this case it is
better not to use cross-section functions at all. An example of a symmetric figure and its
cross-section function is given in Fig. 2.1.2.

For the shape analysis problem it is important to know some properties of the cross-section
function. The cross-section function ( )q xX  of a figure X

1)  is invariant under translation: ( ) ( )q x q xX v X+ =  where X v+  is X  translated by a
vector v ;

2)  depends from changes of the size of the figure X : ( ) ( )q x q xX Xλ λ=  where λX  is the
figure X  zoomed by a factor λ ;

3)  does not depend on the orientation of the figure X ;
4)  is in the general case not invariant under reflection;
5)  is not periodic;
6)  from the fact that a figure X  is a subset of a figure Y  ( X Y⊂ ) follows that

( ) ( )q x q xX Y≤ .

Some geometrical figure parameters, such as the perimeter ( )P X  and area ( )A X  of the
figure X , can be obtained by integration of the cross-section function ( )q xX :

( ) ( )P X q x dxX
x

x

= + ′∫2 1 2

0

1

 and ( ) ( )A X q x dxX
x

x

= ∫2
0

1

.
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Fig. 2.1.2. a) a symmetric figure X ; b) cross-section function ( )q xX  of the figure X .

Radius-vector functions

Frequently the contour of a figure is described by the radius-vector function [2.1.1-2.1.3] defined
in the following way. A reference point O  in the interior of the figure X  is selected. It is
usually the center of gravity, or the center of the smallest disc which completely contains the
figure or a physically important point. Next, the appropriate reference line l  crossing the
reference point O  is chosen, usually parallel to the x - or y -axes. The radius-vector function

( )rX ϕ  is then the distance from the reference point O  to the contour in the direction of the
ϕ -ray where 0 2≤ ≤ϕ π  (Fig. 2.1.3a).

( )rX ϕ ϕ
O

X

                     

O

X

Fig. 2.1.3. a) radius-vector function; b) problems with the radius-vector function occur if the
figure is not star-shaped.

It is necessary, however, that the figure is star-shaped with respect to O ; that is, for any
contour point p  the whole line segment from O  to p  lies within the figure. In this case the
radius-vector function completely characterizes the figure: if ( )rX ϕ  is given, than the figure
can be completely reconstructed. If the star-shapedness is violated only by small irregularities
in the contour it is possible to recover it by smoothing. In the general case, however,
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description by the radius-vector function is not suitable for non-star-shaped figures. An
examples of a star-shaped figure and its radius-vector function is given in Fig. 2.1.4.
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Fig. 2.1.4. a) a start-shaped figure X ; b) radius-vector function ( )rX ϕ  of the figure X .
The center of gravity of the figure was used as the origin to generate the radius-vector
function.

For the shape analysis problem it is important to know how the radius-vector function
( )rX ϕ  of a star-shaped figure X  depends on basic geometrical transformations such as

translation, size changes, rotation and reflection and which other properties it has. The radius-vector
function ( )rX ϕ  of a star-shaped figure X

1)  is invariant under translation: ( ) ( )r rX v X+ =ϕ ϕ  where X v+  is X  translated by a
vector v ;

2)  depends on the changes of the size of the figure X : ( ) ( )r rX Xλ ϕ λ ϕ=  where λX  is the
figure X  zoomed by a factor λ ;

3)  depends on the orientation of the figure X : ( ) ( )r rX Yϕ ϕ α= −  where Y  is the figure
X  rotated by an angle α ;

4)  is not invariant under reflection;
5)  is periodic with the period 2π : ( ) ( )r rX Xϕ π ϕ+ =2 ;
6)  from the fact that a start-shaped figure X  is a subset of a star-shaped figure Y  ( X Y⊂ )

follows that ( ) ( )r rX Yϕ ϕ≤ .

The map X rX→  transforms star-shaped figures into elements of a function space; radius-
vector functions of star-shaped figures are continuous in ϕ ; consequently they can be
embedded in the Banach space [ ]C 0 2, π  of all continuous functions on [ ]0 2, π .

When the radius-vector function ( )rX ϕ  of a star-shaped figure X  is available some
geometrical figure parameters can be obtained. Integrating of ( )rX ϕ  yields the perimeter

a b
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( )P X , area ( )A X  and mean radius-vector length rX :

( ) ( ) ( )P X r r dX X= + ′∫ 2 2

0

2

ϕ ϕ ϕ
π

, ( ) ( )A X r dX= ∫
1
2

2

0

2

ϕ ϕ
π

 and ( )r r dX X= ∫
1

2 0

2

π
ϕ ϕ

π

.

A quantitative index of differences between radius-vector functions of different figures may
be obtained by determination of the average squared deviation of the radius-vector function
from a circle of equal area. This 'roughness coefficient' may be defined as:

( ) ( )′ = −








∫ ∫R r d r dX X X

1
2

1
2

2

0

2

0

2 2

π
ϕ ϕ

π
ϕ ϕ

π π

.

Support functions

For a figure X  the support function [2.1.1] is defined as follows. Let gϕ  be an oriented line
through the origin O  with direction ϕ  ( 0 2≤ ≤ϕ π ) and let gϕ

⊥  be the line orthogonal to
gϕ  so that the figure X  lies completely in the half-plane determined by gϕ

⊥  with
g Xϕ

⊥ ∩ ≠ ∅ , which is opposite to the direction of gϕ  (Fig. 2.1.5a). The absolute value of
the support function equals to the distance from O  to gϕ

⊥  and the support function ( )sX ϕ
is negative if the figure lies behind gϕ

⊥  as seen from the origin. If O  is an element of the
figure X  than ( )sX ϕ ≥ 0  for all ϕ .

O
ϕ

s(ϕ)
w(ϕ)

gϕ

gϕ
⊥

gϕ π+
⊥

X

         
Fig. 2.1.5. a) definition of the support function ( )sX ϕ  and the width function ( )wX ϕ  of
the figure X ; b) both figures have the same support functions.

An equation to calculate the support function ( )sX ϕ  can be written taking into account the
normal equation of a line. Consider the closed contour of a figure X  in Euclidean space. Let
the perimeter of the figure X  be L . Every point ( ) ( )( )x l y lX X,  of the contour of X  can

a b
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thus be identified with a number l , with 0 ≤ ≤l L , run through anti-clockwise. Than the
support function ( )sX ϕ  can be calculated as ( ) ( ) ( ){ }s x l y lX l L X Xϕ ϕ ϕ= +

≤ ≤
max cos sin
0

.

It is obvious that there exist different non-convex figures with the same support function
(Fig. 2.1.5b). In contrast, convex figures are uniquely determined by their support functions.
An example of a convex figure and its support function is given in Fig. 2.1.6.
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Fig. 2.1.6. a) a convex figure X ; b) support function ( )sX ϕ  of the figure X . The center
of gravity of the figure was used as the origin to generate the support function.

For the shape analysis problem it is important to know some properties of the support
function. The support function ( )sX ϕ  of a convex figure X

1)  is, in general, not invariant under translation except when O  is an element of the
figure X ;

2)  depends on changes of the size of the figure X : ( ) ( )s sX Xλ ϕ λ ϕ=  where λX  is the
figure X  zoomed by a factor λ ;

3)  depends on the orientation of the figure X : ( ) ( )s sX Yϕ ϕ α= −  where Y  is the figure
X  rotated by an angle α ;

4)  is not invariant under reflection;
5)  is periodic with the period 2π : ( ) ( )s sX Xϕ π ϕ+ =2 ;
6)  from the fact that a convex figure X  is a subset of a convex figure Y  ( X Y⊂ ) follows

that ( ) ( )s sX Yϕ ϕ≤ ;
7)  if a convex figure X  is symmetric then ( ) ( )s sX Xϕ ϕ π= + .

The map X sX→  transforms convex figures into elements of a function space; support
functions of convex figures can be embedded in the Banach space [ ]C 0 2, π  of all
continuous functions on [ ]0 2, π .

If a convex figure X  has a smooth boundary, then its support function ( )sX ϕ  determines

a b
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the curvature. The curvature radius ( )ρ ϕX  of the figure X  corresponding to ϕ  is related to
the support function ( )sX ϕ  as ( ) ( ) ( )ρ ϕ ϕ ϕX X Xs s= + ′′  where 0 2≤ ≤ϕ π .

Having support function ( )sX ϕ  of a convex figure X  its perimeter ( )P X  and area ( )A X
satisfy

( ) ( )P X s dX= ∫ ϕ ϕ
π

0

2

 and ( ) ( ) ( ) ( )( )A X s s s dX X X= + ′′∫
1
2 0

2

ϕ ϕ ϕ ϕ
π

.

Width function

The so-called width function [2.1.1] ( )wX ϕ  (Fig. 2.1.5a) is closely related to the support
function of the figure X : ( ) ( ) ( )w s sX X Xϕ ϕ ϕ π= + +  where 0 ≤ ≤ϕ π . Physically

( )wX ϕ  is the breadth of the figure in the direction ϕ . For form analysis the width function
has the advantage that it is invariant with respect to translation. But rotation changes the
width function. In general, the width function does not describe the form of a figure
uniquely even if the figure is convex. An example of a figure and its width function is given
in Fig. 2.1.7.
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Fig. 2.1.7. a) a figure X ; b) width function ( )wX ϕ  of the figure X .

Having the width function ( )wX ϕ  of the figure X  some contour parameters can be
obtained. The perimeter ( )P X  of the figure can be yielded as

( ) ( )P X w dX= ∫
1
2 0

2

ϕ ϕ
π

,

however the area is not uniquely determined by the width function.
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Contour parametric and contour complex functions

Consider the closed contour of a figure X  in Euclidean space. Let the perimeter of the
figure X  be L . Every point pl  of the contour of X  can thus be identified with a number
l , with 0 ≤ ≤l L , run through anti-clockwise. Their coordinates are ( ) ( )( )x l y lX X, . A

point moving along the contour in the anti-clock-wise direction generates a function which
can be represented parametrically as ( ) ( ) ( )( )c l x l y lX X X= , . A contour parametrization in

which the contour is parametrized by its arc length is called a natural parametrization.
Now consider the closed contour of a figure X  in polar coordinates. Every point pl  of the
contour of X  has polar coordinates ( ) ( )( )d l lX X, θ . A point moving along the contour in

the anti-clockwise direction generates a function which can be represented parametrically as
( ) ( )( )τ θX X Xl d l l( ) ,= .

Finally, consider the closed contour of a figure X  in a complex plane. Every point pl  of the
contour of X  has its complex coordinates ( ) ( ) ( )z l x l iy lX X X= + . A point moving along
the contour in the anti-clockwise direction generates a complex function ( )z lX  [2.1.4-2.1.7].

It is important to note that these three different contour functions are identical; the only
difference is that they represent the same thing for different coordinate systems. Having one
contour function representation, the two other can be easily obtained:

( ) ( ) ( )z l x l iy lX X X= + , ( ) ( ) ( )( )c l z l z lX X X= Re , Im ,

( ) ( ) ( )( )τ X X Xl z l z l= , arg , ( ) ( ) ( ) ( ) ( )( )c l d l l d l lX X X X X= cos , sinθ θ .

Examples of the contour parametric functions are given in Fig. 2.1.8.

When one of these functions of a figure X  is available some geometrical figure parameters
can be calculated. The perimeter ( )P X  of the contour is

( ) ( ) ( )P X x l y l dlX X

L

= ′ + ′∫ 2 2

0

.

The oriented figure area ( )A X  is given by the well-known differential geometry formula

( ) ( ) ( ) ( ) ( )
( )

A X x l
dy l

dl
y l

dx l
dl

dlX
X

X
X

C

= −






∫

1
2

where ( )A X  is positive or negative depending on where the figure is located when it is
traced on the contour C  - from the left or right side, respectively. Equations of the tangent
and normal at a point ( ) ( )( )x l y lX X,  of a figure X  are:

( )
( )

( )
( )

y y l
y l

x x l
x l

X

X

X

X

−
′

=
−

′
 and ( ) ( )( ) ( ) ( )( )′ − + ′ − =x l x x l y l y y lX X X X 0 .
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The curvature ( )κ X l  and the curvature radius ( )ρ X l  at a point ( ) ( )( )x l y lX X,  can be

calculated as

( ) ( ) ( ) ( ) ( )
( ) ( )( )

κ X
X X X X

X X

l
x l y l x l y l

x l y l
=

′ ′′ − ′′ ′

′ + ′2 2 3 2  and ( ) ( )
ρ

κX
X

l
l

= 1
.

The coordinates ( )x yk k,  of the center of curvature at a point ( ) ( )( )x l y lX X,  are defined as

( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )x x l
y l x l y l

x l y l y l x lk X
X X X

X X X X

= −
′ ′ + ′

′ ′′ − ′ ′′

2 2

 and ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )y y l
x l x l y l

x l y l y l x lk X
X X X

X X X X

= +
′ ′ + ′

′ ′′ − ′ ′′

2 2

.
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Fig. 2.1.8. a) a complex function ( )z lX  of a figure X ; b) parametric function

( ) ( ) ( )( )c l x l y lX X X= ,  of the figure X ; c, d) parametric function

( ) ( ) ( )( )τ θX X Xl d l l= ,  of the figure X .

Some properties of the contour complex and parametric functions are recalled. The
functions

1)  are not invariant under translation of the figure X ;
2)  are not invariant under changes of the size of the figure X ;
3)  depend on the orientation of the figure X ;

a b
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4)  are not invariant under reflection of the figure X ;
5)  are periodic with the period L .

However, these functions are very attractive in such fields of shape analysis as Fourier and
wavelets analyses and they are the basis to obtain any other contour functions.

For shape analysis it is sometimes helpful to normalize these functions in such a way that the
perimeter length is eliminated and the functions are defined on [ ]0 2, π . It can be done in

the following way. The perimeter is normalized by defining t lL= −2 1π  and the functions are
normalized as

( ) ( )( )c t c tLX X
* = −2 1π , ( ) ( )( )τ τ πX Xt tL* = −2 1  and ( ) ( )( )z t z tLX X

* = −2 1π .

Tangent-angle function

Often the tangent angle at different points of the contour is used for the description of a
figure [2.1.1, 2.1.8]. It is assumed that the contour of the considered figure is piecewise-
smooth so that a tangent may not exist at a finite number of points.
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φX(li)
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Fig. 2.1.9. a, b) definition of the tangent-angle function ( )φX l  of figure X .

Let the perimeter of the figure X  be L . Every point pl  of the contour of X  can thus be
identified with a number l , with 0 ≤ ≤l L , run through anti-clockwise. A pointer is places
at p0  so that its zero position coincides with the tangent direction at p0 . If the pointer
moves on the contour then it changes its direction in such a way that it is always in the
direction of the tangent, where its orientation is given by the direction of the movement. The
angle given by the pointer direction at pl  is denoted ( )φ X l  where ( )φ X 0 0=  and

( )φ πX L = 2  (Fig. 2.1.9). The function ( )φ X l  is called the tangent-angle function.

For shape analysis it is helpful to normalize the function ( )φ X l  in such a way that the

a b
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perimeter length is eliminated and the function is defined on [ ]0 2, π  like the radius-vector

and support functions. In practice it is done as follows. The perimeter is normalized by
defining t lL= −2 1π  and ( )φ X l  is normalized as

( ) ( )( )φ φ πX t Lt t* = +−2 1

where 0 2≤ ≤t π  and ( ) ( )φ φ πX X
* *0 2 0= = . An examples of a figure and its normalized

tangent angle function is given in Fig. 2.1.10.
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Fig. 2.1.10. a) a figure X ; b) the normalized tangent-angle function ( )φ X t*  of the figure.

Some properties of the tangent-angle function are recalled. The normalized tangent-angle
function ( )φ X t*  of a figure X

1)  is invariant under translation: ( ) ( )φ φX v Xt t+ =* *  where X v+  is X  translated by a
vector v ;

2)  is invariant under changes of the size of the figure X : ( ) ( )φ φλX Xt t* *=  where λX  is the
figure X  zoomed by a factor λ ;

3)  does not depend on the orientation of the figure X ;
4)  is not invariant under reflection;
5)  is periodic with the period 2π : ( ) ( )φ π φX Xt t* *+ =2 .

The map X X→ φ *  transforms figures into elements of a function space, but the normalized
tangent-direction functions of figures in the general case are not continuos.

An important discrete version of the tangent-angle function for the case of digital contours is
chain encoding. The result of chain encoding is the direction from a point of the contour to its
nearest neighbor point along the contour in the anti-clockwise direction as function of the
index of the contour point. Such function is a sequence of numbers 0, 1, ..., 7 which

a b
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correspond to the angles 0º, 45º, 90º, ..., 115º.

The intrinsic equation of  the contour

The intrinsic equation of the contour is a logical extension of the tangent-angle function. It is
defined to be the curvature as function of the contour arc length [2.1.9-2.1.12]. Such
representation of the contour plays a key role in differential geometry. The importance of
this approach is immediately clear when looking at the fundamental theorem in the analysis of
curves: if two single-valued continuous functions are given then there exists one and only one planar curve,
determined but for its position on the plane, for which one of the given functions is the arc length (measured
from an appropriate point on the curve) and other is the curvature.

Three different definitions of the curvature can be given:

i)  path based continuous curvature:

( ) ( ) ( ) ( ) ( )
( ) ( )( )

κ X
X X X X

X X

l
x l y l x l y l

x l y l
=

′ ′′ − ′′ ′

′ + ′2 2 3 2 ;

i)  orientation based continuous curvature: ( ) ( )κ φX Xl l= ′ ;
ii)  osculating circle based continuous curvature:

( ) ( )

( )
κ

ρ

ρ

X
X

X

l
l

if contour is locally convex

l
if contour is locally concave

=
+

−










1

1 .

The definitions are equivalent in the continuous case but not in the discrete case. Different
methods of curvature estimation are based on one of these definitions. An example of a
curvature function is given in Fig. 2.1.11.

Curvature function has the same properties as those mentioned for the tangent-angle
function. Some geometrical contour features are related to the contour curvature function

( )κ X l . Thus, the corners are locations on the contour where the curvature ( )κ X l  becomes
unbounded. In practice, a corner is declared whenever ( )κ X l  assumes a large value.
Another attribute associated with the curvature is the bending energy:

( )E
L

l dlX X

L

= ∫
1 2

0

κ .

The definition of the detrended function ( )θ X l  of the contour is closely related to its curvature:

( ) ( )θ κ π
X

o

l

l p dp
l

L
= −∫

2
.
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Fig. 2.1.11. Curvature function ( )κ X l  of the figure shown in Fig. 2.1.10a.

Concluding remarks on contour functions

The contour functions, described above, have certain advantages and disadvantages for
shape analysis. Application of the cross-section function is limited only to symmetric figures.
The radius-vector function requires the figure to be star-shaped whereas for the support
function convexity is desirable. The tangent-angle function, the contour curvature and
contour complex functions as well as the contour parametric functions can be applied to any
contours. All discussed functions depend on the choice of a reference point, they have
complex relations to the basic geometrical transformations such as translation, rotation, size
changes and reflection. All of them, except the cross-section and width functions, are or can
be defined on [ ]0 2, π .

Generally speaking, the entire mathematical theory of functions as well as the differential and
computational geometry can be applied to analyze the contour functions. In practice,
however, only some ideas are used. In addition the contour of a figure or its contour
function can be considered as a realization of a random process. In this case the theory of
stochastic models and the statistical analysis are appropriate tools to be used in shape
analysis.

2.1.2. Application of contour functions to shape analysis

The largest area of applications of contour functions and what makes them so attractive for
shape analysis is not just the possibility to calculate some simple geometrical parameters of
figures such as the perimeter and area, but the potentiality to expand them into time series
and the possibility to approximate them by simpler functions which can then be easily
analyzed.
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Before describing how these contour functions can be used for shape analysis a few
important remarks should be made. For the theoretical considerations it is always assumed
that a contour function ( )f x  is continuous and continuously differentiable, with the
expectation of a finite number of points. However, in practice of image processing,
continuos contours of figures are never available but only their discrete approximations at
some nodes. Consequently contour functions are also determined as a sequence of
interpolation nodes xi  and of corresponding function values ( )f xi  where i N= 1 2, ,... .
Thus, instead of a contour function ( )f x , its discrete numerical version ( )f xi  is
considered. Usually it is given as lists of numbers. One of consequences of such replacement
is that the integration and differentiation of these functions are not continuous anymore and
are performed by methods of numerical analysis.

Invariant contour function parameters

Some simple quantities of contour functions can be determined [2.1.1]. They can be used
when the radius-vector function, the width function, the tangent-vector function, the
contour curvature or the contour parametric functions are available.

The mean value of the contour function ( )f x  and its numerical approximation are given by

( ) ( )f f x dx
N

f xi
i

N

= ≈∫ ∑
=

1
2

1

0

2

1π

π

.

The mean value f  of the contour function ( )f x  is a size parameter except in the case of
the tangent-vector, the contour curvature and the contour parametric functions. In the latter
case it reveals the center of gravity of the contour.

The variance of the contour function ( )f x  is given by

( ) ( )[ ] ( )( )σ
π

π
2 2 2

10

21
2

1
f f x f dx

N
f x fi

i

N

= − ≈ −
=
∑∫ .

The variance ( )σ 2 f  of the contour function ( )f x  is a size, shape and roundness
characteristic. The variance of the derivative of the contour function ( )f x  is given by

( ) ( ) ( ) ( ) ( ) ( )
σ

π

π
2 2

0

2
2 1 1 2

2

1

1
2

1 8 8
12

′ = ′ ≈
− + −






∫ ∑ − − + +

=

f f x dx
N

f x f x f x f xi i i i

i

N

∆
where ∆ = −2 1πN , x xN− −=1 1 , x xN0 = , x xN + =1 1 , x xN + =2 2 . The variance ( )σ 2 ′f  of
the derivative describes local properties such as roundness and texture variations.

The covariance function of the contour function ( )f x  is given by
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( ) ( )[ ] ( )[ ]χ ϕ
π

ϕ
π

f f x f f x f dx= − + −∫
1

2 0

2

, ( ) ( )[ ] ( )[ ]χ f i i k
i

N

k
N

f x f f x f∆ = − −+
=
∑1

1

where 0 2≤ ≤ϕ π , ( ) ( )f x f x2π + = , x xN k k+ = . The covariance ( )χ ϕf  describes some
aspects of local and global form fluctuations. The normalized function ( ) ( )χ ϕ χf f

−1 0
characterizes the shape of the figure.

The quantities f  and ( )σ 2 f  can be interpreted as mean and variance corresponding to a
distribution function ( )F xf , defined as follows:

( ) ( ){ }( )F x ff = ≤ ≤ ≤1
2

0 0 2
π

ϕ ϕ ϕ πL : ; , x ≥ 0

where L  denotes the Lebesgue measure of R1  which is the length for a regular set in R1 .
The distribution function ( )F xf  of the contour function ( )f x  is a size, shape and
roundness characteristic.

Line moments and invariants

A very useful and practical set of shape descriptors is based on the theory of moments [2.1.4,
2.1.13] which, for the case of the figure contour, can be introduced as follows [2.1.14, 2.1.15].
Consider the parametric representation ( )c lX  of the contour C  of a figure X . The line
moments along the contour are given by

( ) ( ) ( ) ( )
( )

m x l y l l dlp q X
p

X
q

C
,

1 = ∫ δ

where ( )δ l  is a linear density of the contour which for simplicity can be taken as 1. The
number p q+  is called the order of the moment. The line moments usefulness for shape
analysis follows from the moment uniqueness theorem: the infinite set of the line moments uniquely
determines the contour, and vice-versa.

In practice, calculation of the linear moments can be performed by simple summation:

( ) ( )( ) ( )( )m x l y lp q X i

p

X i

q

i

N

,
1

1

≈
=
∑

where N  is the number of available points of the contour C . This formula is different when
only an approximation of the contour by a polygon is available. If the contour is
approximated by an n -side polygon with vertexes ( )x yi i,  where i n= 1 2, ,... , each line
segment ui  can be parameterized by y a x y a xi i i i= + −  where x x xi i≤ ≤ +1  and

( ) ( )a y y x xi i i i i= − −+ +1 1  is the slope of the segment ui . If the segment is vertical, the
alternative parametrization should be used: x xi=  where y y yi i≤ ≤ +1 . Then the following
formula can be used to calculate the linear moments where Ck

q  are binomial coefficients:
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( )
( )
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p q
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q
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p k
i
p k

k

q

i

i
p i

q
i
q
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+ + + +

=
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∑
∑ .

The line moments are not invariant under the main geometrical transformations such as
translation, rotation, scale change and reflection. However the central moments are invariant
under translation. To obtain them the center of gravity of the contour C  should be
calculated which, actually, can be expressed through the zero- and first-order line moments:

( ) ( )x m m= 1 0
1

0 0
1

, ,  and ( ) ( )y m m= 0 1
1

0 0
1

, , .

Than the central moments are just
( ) ( )( ) ( )( ) ( )

( )
µ p q X

p

X

q

C

x l x y l y l dl,
1 = − −∫ δ .

The central moments up to the third order are also given by the following relations:
( ) ( )µ 0 0
1

0 0
1

, ,= m , ( ) ( )µ µ1 0
1

0 1
1 0, ,= = , ( ) ( ) ( )µ 2 0

1
2 0
1

0 0
1 2

, , ,= −m m x , ( ) ( ) ( )µ1 1
1

1 1
1

0 0
1

, , ,= −m m xy ,
( ) ( ) ( )µ 0 2
1

0 2
1

0 0
1 2

, , ,= −m m y , ( ) ( ) ( ) ( )µ 3 0
1

3 0
1

2 0
1

0 0
1 33 2, , , ,= − +m m x m x ,

( ) ( ) ( ) ( ) ( )µ 2 1
1

2 1
1

2 0
1

1 1
1

0 0
1 22 2, , , , ,= − − +m m y m x m x y , ( ) ( ) ( ) ( ) ( )µ1 2

1
1 2
1

0 2
1

1 1
1

0 0
1 22 2, , , , ,= − − +m m x m y m xy  and

( ) ( ) ( ) ( )µ 0 3
1

0 3
1

0 2
1

0 0
1 33 2, , , ,= − +m m y m y .

To obtain scaling invariant line moments, normalization by the contour length should be
done which leads to

( ) ( ) ( )( ) ( )
η µ µp q p q

p q

, , ,
1 1

0 0
1 1

=
− + +

.

Under rotation and reflection the moment-generation function will change. However, via the
theory of algebraic invariants it is possible to find certain polynomials of the central line
moments that remain unchanged under rotation and reflection. Some moment invariants are
as follows:

i)  for first-order moments: ( ) ( )µ µ1 0
1

0 1
1 0, ,= =  are always invariant;

ii)  for second-order moments the invariants are:
( ) ( ) ( )φ µ µ1
1

2 0
1

0 2
1= +, ,  and ( ) ( ) ( )( ) ( )( )φ µ µ µ2

1
2 0
1

0 2
1 2

1 1
1 2

4= − +, , , ;

iii)  for third-order moments the invariants are:

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

φ µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ

5
1

3 0
1

1 2
1

3 0
1

1 2
1

3 0
1

1 2
1 2

2 1
1

0 3
1 2

0 3
1

2 1
1

0 3
1

2 1
1

0 3
1

2 1
1 2

1 2
1

3 0
1 2

3 3

3 3

= − + + − +



 +

+ − + + − +





, , , , , , , ,

, , , , , , , ,

,
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( ) ( ) ( )( ) ( ) ( )( )φ µ µ µ µ3
1

3 0
1

1 2
1 2

0 3
1

2 1
1 2

3 3= − + −, , , , , ( ) ( ) ( )( ) ( ) ( )( )φ µ µ µ µ4
1

3 0
1

1 2
1 2

0 3
1

2 1
1 2

= + + +, , , ,  and

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )φ µ µ µ µ µ µ µ µ µ µ µ6
1

2 0
1

0 2
1

3 0
1

1 2
1 2

2 1
1

0 3
1 2

1 1
1

0 3
1

1 2
1

0 3
1

2 1
14= − + − +



 + + +, , , , , , , , , , , ;

iv)  it has been shown [2.1.4] that for N th -order moments where N ≥ 3 , there are N + 1
absolute invariants, which remain unchanged under both reflection and rotation. A
number of other invariants can be found that remain unchanged under rotation but
change sign under reflection.

The relationship between invariant moments becomes more complicated for higher-order
moments. However, moment invariants can be expressed more conveniently in terms of
what are called Zernike moments. These moments are defined as the projections of a function
of two variables on a class of Zernike polynomials.

Being invariant under linear coordinate transformations, the moment invariants are useful
features in pattern recognition problems. Using N  moments, a contour can be represented
as a point in an N -dimensional vector space and the pattern recognition problem thus is
converted into a standard decision theory problem, for which several approaches are
available.

Several figure parameters are based on moments. The figure's orientation θ  is the angle
between the major axis of the figure and the x  axis of the coordinate system in which the
figure is considered:

( )

( ) ( )θ =
−











1
2

2
arctan

µ

µ µ
1,1
1

2,0
1

0,2
1

.

Ones θ  is known the bounding rectangle of the figure can be determined. The bounding
rectangle is the smallest rectangle enclosing the object that is also aligned with its orientation.
Its sides can be calculated as follows where 0 ≤ ≤l L :

( ) ( ){ } ( ) ( ){ }h x l y l x l y lX X X X= + − +max cos sin min cos sinθ θ θ θ ,

( ) ( ){ } ( ) ( ){ }w x l y l x l y lX X X X= − + − − +max sin cos min sin cosθ θ θ θ .

The best-fit ellipse of the figure can be also expressed in terms of the line moments. The best-
fit ellipse is the ellipse whose second moments are equal that of the figure. Let a  and b
denote the length of semi-major and semi-minor axes of the best-fit ellipse. Then

( )( )( )
( )( )a = 4

4

3

8

π

θ

θ

µ

µ

2,0

1

0,2

1
 and 

( )( )( )
( )( )b = 4

4

3

8

π

θ

θ

µ

µ

0,2

1

2,0

1

where

( )( )µ
0,2

1θ  and ( )( )µ
2,0

1θ
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are the second-order line moments of the contour C*  of the figure X * , which is obtained
by rotating the figure X  by the angle − θ .

The figure's eccentricity ε  can be measured as:

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

( )ε =
µ µ µ

µ µ µ

µ µ µ
0,2
1

2,0
1

1,1
1

0,2
1

2,0
1

1,1
1

2,0
1

0,2
1

1,1
1

cos sin sin

sin cos cos

2 2

2 2

2

2

2

4θ θ θ

θ θ θ

+ −

+ +
=

− +

A X
.

Finally the figure's contour spread S  can be calculated in terms of the central moments as
( ) ( )S = +µ µ0,2
1

2,0
1 .

One of the advantages of the usage of the line moments in shape analysis is that neither the
existence of an area nor a closed contour is required. The line moments can be calculated for
an arbitrary collection of contour fragments.

Approximation of  contour functions by other simple functions

Let there be given a sequence of interpolation nodes xi  and function values yi  where
i n= 1 2, ,... . A suitable approximation by mathematically simple functions has to be
determined. A common approach to solve this problem is the following. A function

( )F x c c cp; , , ...,1 2  is chosen with parameters c c cp1 2, , ...,  which are to be determined in
such a way that the sum of squares of deviations is minimized. A popular form of F  is

( ) ( )F x c c c c g xp j j
j

p

; , , ...,1 2
1

=
=

∑
where ( )g xj  are certain functions, for example ( )g x xj

j=  (polynomial approximation) or
( )g x k xj j= sin  and cosk xj  (Fourier series approximation). In addition to these two

variants, there is the possibility of choosing particular functions appropriate for a given
problem. Approximation of the contour of a figure by an ellipse and linear piecewise
approximation is described below. These two particular approximation methods are chosen
because of their frequent use in shape analysis.

To approximate the contour of a figure by an ellipse several methods are available [2.1.1,
2.1.4]. The choice depends on the availability of various measures of the figure and on the
deviations of the figures from an ideal ellipse. The following three methods are considered.

1)  The best-fit ellipse can be expressed in terms of the line moments.

2)  The Dmax method involves measurement of area ( )A X  of the figure X  and determination
of the line g  that has the maximal intersection with X . If dmax  is the length of g X∩
which can be calculated as
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( ) ( )( ) ( ) ( )( )d x l x l y l y l
l l X

X i X j X i X i
i j

max
,

max= − + −





∈

2 2

 where the parametric representation of the contour C  of a figure X  is
( ) ( ) ( )( )c l x l y lX i X i X i= , , then a d= 05. max , ( ) ( )b A X d= 2 π max  and the slope of the

line g  gives the orientation of the ellipse.

3)  The area-perimeter method is based on the following formulae:

( )
a

A X
= + −α α

π
2  and 

( )
b

A X
a

=
π

 where 
( ) ( )

α
π π

= +










1
3

A X P X
.

Linear piecewise (polygonal) approximation [2.1.16] of the contour of a figure or contour functions
(instead of both terms the word curve is used in the following text) is frequently used. It
produces a polygon which closely resembles the original curve and the polygon vertexes are a
representation of the curve. There are three basic methods to obtain such approximation.

1)  Resampling method is based on an equivalent distance resampling of the curve starting from
an arbitrary curve point. This is the most simple, but also an ineffective and wrong way of
polygonal approximation when any information about the shape of the curve is not taken
into account. With a large number of approximation nodes, it produces a smooth curve
approximation.

2)  In the error criteria method the quality of the fit of the polygon to the curve is measured in
order to obtain a good polygonal approximation. Suppose that a curve from point A  to
B  is approximated by the straight line segment AB . Let pi  denotes the curve points
from point A  to point B . The distance from pi  to the line AB  is the approximation
error of the curve AB  by the line segment AB  for a particular curve point pi . This

distance can be computed using the coordinates ( )x yA A, , ( )x yB B,  and ( )x yp pi i
,  of

the points A , B  and pi , respectively, as

( )d bi = −1 2cos α  where ( ) ( )cosα = + −b c a bc2 2 2 2 ,

( ) ( )a x x y yp B p Bi i
= − + −

2 2
, ( ) ( )b x x y yp A p Ai i

= − + −
2 2

 and

( ) ( )c x x y yB A B A= − + −
2 2

.

 The fitness criterion can be either the mean square error E2  or the maximal error Emax :

E di
i

2
2= ∑ , { }E d

i imax max= .

 The optimal linear piecewise approximation can be obtained by choosing the polygon
vertexes in such a way that the overall approximation error is minimized. A solution of
this problem is not a trivial and requires heavy computations. However, there exist two
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approaches which are fast and relatively efficient in most cases. The merge technique works
in the following way. Starting from the curve point p0  and traversing the curve in the
clockwise direction through the points pi  the fitness error of the approximation of the
piece of the curve from the point p0  to pi  is calculated. If the error exceeds a certain
threshold the current curve point pi  is declared as the polygon vertex and the same
procedure is repeated starting from this point until the entire curve is spanned. The
primary disadvantage of the merge method is that polygon vertexes do not coincide with
curve inflection points. The splitting technique avoids this problem. In order to start splitting
of the curve two curve inflection points must be found which can be, for example, the
points of maximal curvature. Than the curve segment between these points is recursively
divided into sub-segments until the fitness errors of all sub-segments are below a certain
threshold. A point on that part of the curve which is approximated by a straight line
interval, l j , is chosen to be a new vertex of the polygonal approximation if 1) the fitness
error for the current approximation by l j  of the considered piece of the curve is larger
than the predefined value and 2) the distance from this point to the approximation line l j

is maximal.

3)  The third method is related to the intrinsic equation of a curve. The points of maximal
curvature of the curve serve as the vertexes of the polygon which approximates the curve
(Fig. 2.1.12).

      
Fig. 2.1.12. Polygonal approximation: a) the contour of a figure; b) the same contour
approximated by a polygon using the points of maximal curvature.

Fourier analysis of  contour functions

Fourier analysis [2.1.1-2.1.8, 2.1.16-2.1.23] is one of the most frequently used methods in
shape analysis. Consider a periodic piecewise continuous and differentiable function ( )f x
defined on [ ]0 2, π  which can be one of contour functions introduced above. Such function
can be approximated by a Fourier series:

a b
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( ) ( )f x
a

a kx b kxk k
k

= + +
=

∞

∑0

12
cos sin

where the Fourier coefficients are

( )a f x kx dxk =
−
∫

1
π π

π

cos  and ( )b f x kxdxk =
−
∫

1
π π

π

sin .

The Fourier series can be also written as

( ) ( )f x
a

A kxk k
k

= + +
=

∞

∑0

12
sin ϕ

where A a bk k k= +2 2  and tg a bk k kϕ = , or in complex form as

( )f x c ek
ikx

k

=
=−∞

∞

∑  where ( ) ( )
( )

c f x e dx

a
if k

a ib if k

a ib if k

k
ikx

k k

k k

= =

=

− >

+ <














−

−

− −

∫
1

2

2
0

1
2

0

1
2

0

0

π π

π

.

Each term of the Fourier series is called harmonic and Ak  is the harmonic amplitude. The
sequence { }Ak  is called the amplitude spectrum.

Some general properties of Fourier series expansion and Fourier coefficients are given below.

1. The coefficient a0  equals to the mean value f  of ( )f x .

2. The Fourier coefficients depend in different ways on the form of the function: the ak , bk

and Ak  for small k  tend mainly to describe the global characteristics, while the
coefficients for large k  describe roughness;

3. Symmetry properties of the figure are reflected by the Fourier coefficients. That is, if the
function ( )f x  have a smaller period than 2π , namely 2π / l , where l ∈Ν  and l > 1 ,
then if a0  is excluded, only the coefficients ak  and bk  with k lm=  where m = 1 2, , ...
differ from zero.

4. The operation that assigns to a function ( )f x  its Fourier coefficients ak  and bk  is linear.
That is, let ( )f x  be given in the form

( ) ( )f x f xi i
i

m

=
=
∑γ

1

 and let ( )ak
i  and ( )bk

i  be the Fourier coefficients of the functions ( )f xi , then the Fourier
coefficients of ( )f x  can be written as

( )a ak i k
i

i

m

=
=
∑γ

1

 and ( )b bk i k
i

i

m

=
=
∑γ

1

.
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Fig. 2.1.13. a) a radius-vector function; b) normalized amplitude spectrum { }A An 0  for

the given radius-vector function; c) a contour complex function; d) normalized amplitude

spectrum { }c cn 1  ( n ≠ 0 ).

5. Several geometrical transformations of the contour of a figure are related to simple
operations on the corresponding Fourier coefficients: if a translation of the contour has
an influence on the contour function (e.g. the contour complex function) then the new
Fourier coefficients remain the same except for k = 0 ; a shrinking or expanding the
contour by a factor α  results in scaling of the Fourier coefficients, ′ =c ck kα  where ck

and ′ck  are the Fourier coefficients of the original and scaled contours, respectively;
changing the starting point in tracing the contour results in a modulation of the
coefficients, ′ = −c c ek k

ikx0  where x0  is the new starting point; rotation of the contour by
an angle θ0  causes a constant phase shift of θ0  in the Fourier coefficients, ′ =c c ek k

iθ0 ;
finally reflection of the contour about a straight line Ax By C+ + = 0  gives the new
contour for which

( ) ( )
′ =

− +
+

+
− +

+−c c
A iB

A B
A iB C

A Bk k k
*

2

2 2 2 22δ .

6. The Ak  (for all k ) and ck  (for all k  except k = 0 ) are invariant with respect to shift of

a b

c d
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the starting point (variable x ), rotation and reflection of the contour. The quantities
c ck 1 , a ak 0 , b ak 0  are invariant to scaling. Finally A Ak 0  and c ck 1  are invariant
to all above mentioned geometrical transformations. Examples of { }A Ak 0  and
{ }c ck 1  for different contour functions are given in Fig. 2.1.13.

7. As in the theory of stochastic processes, there is a close connection between the contour
covariance function ( )χ ϕf  and the Fourier coefficients Ak  of a given function ( )f x :

( )χ ϕ ϕf k
k

A k=
=

∞

∑1
2

2

1

cos  and ( )A k dk f
2

0

22= ∫π
χ ϕ ϕ ϕ

π

cos  where A f0 = .

In the practice of shape analysis the discrete version of the Fourier transform is applied
[2.1.1, 2.1.4]. Consider the value of the function ( )f x  at N  discrete equally spaced values of
xr  (actually x r Nr = 2π ). Then the following equations can be written:

( ) ( )
( )[ ]

f x a a x n b x nr n r n r
n

N

= + +
=

+ −

∑0
1

1 2 1

cos sin , ( )a
N

f xr
r

N

0
0

11=
=

−

∑ ,

( )a
N

f x x nn r r
r

N

=
=

−

∑2

0

1

cos  and ( )b
N

f x x nn r r
r

N

=
=

−

∑2

0

1

sin

where r N= −0 1 1, ,...,  and ( )[ ]n N= + −0 1 1 2 1, ,..., . Also

( )f x c er n
ix n

n

N
r=

=

−

∑
0

1

 and ( )c
N

f x en r
ix n

r

N
r= −

=

−

∑1

0

1

where r N= −0 1 1, ,...,  and n N= −0 1 1, ,..., .

If a contour function ( )f x  is approximated by an M -side polygon whose vertexes are
known and are represented by points vm  where m M= −0 1 1, ,..., , simplified equations
for the Fourier coefficients can be obtained [2.1.4, 2.1.8]:
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where L  is the length of the polygon, l j  is the arc length of j th  vertex from the starting
point and ∆φ j  is change of slope at the vertex j , that is
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j j

j j

j j

j j

v v

v v

v v

v v
=

−

−
−

−

−
−

−

+

+

1

1

1

1

, l v vj p p
p

j

= − −
=

∑ 1
1

 for m > 0  and l0 0= .

In practice, Fourier analysis is applied in different ways depending of the contour function
available. However, it is often enough to consider only the A Ak 0  ( k = 1 2, ,... ) coefficients
independently of what kind of contour function was analyzed, except, of course, in the case
of complex contour function. Moreover, usually all necessary shape information is
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accumulated in only the very few first coefficients.

When the contour of a figure is described by the radius-vector function ( )rX ϕ  the following
structure, size and shape terms are often used.

The parameters for global structure and for roughness are
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n

n

1

1
2

1

=
=

∑  and R An n n
n n

n

2 3

2

3
2

, =
=
∑

where n1 , n2  and n3  are suitable natural numbers chosen with the figures to be analyzed in
mind. The size term is
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where R0  is called the equivalent radius and is the radius of a circle having the same area as
that of the figure. In fact, the area of the figure may be stated in terms of the Fourier
coefficients as ( )A X R= π 0

2 . The shape terms are
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where ( )[ ]n N= + −0 1 1 2 1, ,...,  and ( )[ ]n m N+ = + −2 3 1 2 1, ,..., . The shape term
L0  is the size normalized mean radius of the figure's radial distribution, however the
interpretation of other shape terms is not so simple. The quantity

( ) ( )
( )[ ]

L n L j
j

N

2 2
1

1 2 1

=

+ −

∑
can be considered as a measure of the proportion of the radial variability of the figure that
can be attributed to the n th  harmonic. The partial sum

( )L j
j

k

2
1=

∑
can be used to describe how well the first k  harmonics fit the observed radii. Actually, both
parameters can be used not only for the Fourier analysis of the radius-vector function, but
also when any other contour function is considered.

The size and shape terms are directly related to the mean µ0 , first µ1 , second µ2  and third
µ3  moments about the mean of the figure's radial distribution:
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A quantitative index of differences between different amplitude spectra may be obtained by
determination of the average squared deviation of the radius-vector function from a circle of
equal area. This 'roughness coefficient' may be calculated as the square root of one-half the sum
of the squared Fourier coefficients:
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Sometimes it is also convenient to consider a modified roughness coefficients spanning a
selected range of harmonics rather than all of them:

′ =
=
∑R An n n
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1 2
21

2
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2

, .

When the polar parametric function ( ) ( ) ( )( )τ θX X Xt d t t* * *,=  is considered the following
Fourier analysis can be performed [2.1.18]. Fourier series expansions are used to represent

( )d tX
*  and ( )θ X l* ′

. The equivalent radius is then defined as

( )( ) ( )R d t t dt0
2 2

0

21
2

= ′
∫π

θ
π

* * .

The shape terms L0 , ( )L n2  and ( )L m n3 ,  for the ( )d tX
*  and ( )θ X l*  expansions are

defined in a similar way as described for the radius-vector function.

For the case of the contour complex function ( )c tX
*  the information useful for shape

characterization is accumulated in c ck 1  [2.1.4-2.1.7]. The coefficient c0  is usually not
used because it reflects the contour position.

Some other possible series expansions of  contour functions

Not only the Fourier series expansion of a function can be performed, there are some other
series expansions [2.1.4, 2.1.24] which can be useful in shape analysis. Before introducing
them some general ideas of function series expansions will be given.

For continuous functions, orthogonal series expansions provide series coefficients which can
be used for any further processing or analysis of the functions. For a one-dimensional
function ( )f xr  given at N  equally spaced points xr , a unitary transformation is written as



Part 2: Shape Analysis 2.27
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This can be also written in matrix form as u Af=  where A A1 *T− = . This gives f A u*T=
where the columns of A*T , that is, the vectors a r

* { }= ≤ ≤ −a n Nr n,
* , 0 1

T
 are called the

basis vectors of A . The series coefficients un  give a representation of the function ( )f xr .

The one-dimensional discrete cosine series expansion of a function ( )f xr  given at N  equally spaced
points xr , is defined as
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The one-dimensional discrete sine series expansion of a function ( )f xr  given at N  equally spaced
points xr  ( x r Nr = 2π ), is defined as
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The one-dimensional discrete Walsh-Hadamard series expansion of a function ( )f xr  given at N
( N n= 2 ) equally spaced points xr , is defined as
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 (ri , mi = 0 1, )

and { }ri , { }mi  are the binary representations of r  and m , that is

r r r rn
n= + + + −
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12 2...  and m m m mn
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The Walsh-Hadamard coefficients are computed as
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The one-dimensional discrete Haar series expansion of a function ( )f xr  given at N  ( N n= 2 )
equally spaced points xr , is presented as follows. The Haar functions ( )h xp q,  are defined on a
continuous interval, [ ]x ∈ 0 1, , as
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The Haar transform is obtained by re-scaling of xr  ( ( )′ =x g xr r ) in such a way that
[ ]′ ∈xr 0 1,  and applying the matrix form of a unitary transform for ( )f xr′  and ( )h xp q, .

The one-dimensional Gabor series expansion of a function ( )f x  is defined based on the short-
time Fourier transform:

( ) ( )u g t u e dt e g u e dt
i t i t i

ϖ τ
πω πω

ν
πνττ ν ϖ ν,

* *= − = −−

−∞

∞
−

−∞

∞

∫ ∫2 2 2

where uν  and g  denote the Fourier transforms of ut  and g , respectively, * denotes the
complex conjugate and the window is a Gaussian:

( )g eµ
σ π

µ
σ=

−1
2

2

22 .

Some other series expansions of the contour functions are reported in the literature including
KL, Slant, sinusoidal, singular value decomposition series expansions [2.1.4], etc. However, we have
never seen in the literature any examples of their application for the shape analysis.

Ones a contour function is represented by series coefficients, different methods can be
employed for the extraction of meaningful information from this representation. Of course,
choosing a particular method depends on many factors and can be hardly standardized.
However, one common way for analyzing series coefficients is through the identification and
characterization of a few maximal coefficients. Another possible method of analysis is based
on the idea that the same series coefficients for the same contour functions of different
figures mean the same things and, therefore, can be compared. For the Gabor series
expansion two other methods can be employed. The response of the transform for different
parameters ω and τ can be used for the analysis. Also the projection of the response onto
box axes generates images which can reveal essential features of the analyzed contour
functions.

Multiscale shape analysis using continuous wavelet transform

Consider a contour function ( )f x . Its continuous wavelet transform [2.1.25-2.1.28] with respect
to a wavelet mother function ( )ψ x  is defined as
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( ) ( ) ( ) ( )U a b f x x dxa b, ,=
−∞

∞

∫ ψ

where the wavelets used are of the form of Grossmann-Morlet wavelets:

( )( )ψ ψ
a b

x
a

x b
a,

=
−





1
 where a > 0 , b ∈R .

Wavelets are functions ψ : R R→  with the property that ( ){ },ψ a b  forms an orthonormal

basis of ( )L2 R . Some examples of the Daubechies family of mother wavelets are given in
Fig. 2.1.14.

Basically, wavelet transform of a function ( )f x  is the set of coefficients ( )U a b,  (Fig.
2.1.15a). Behavior of the coefficients under basic geometrical transformation of the analyzed
figure can be predicted as:

1)  under translation: ( )[ ] ( )[ ] [ ] ( )[ ]U f x z U f x U z U f xψ ψ ψ ψ; ; ; ;+ = + = ;

2)  under scaling: ( )[ ]( ) ( )[ ]( )U cf x c a b cU f x a c b cψ ψ; / , ; / , /= ;

3)  under rotation: ( )[ ]( ) ( )[ ]( )U e f x x a b e U f x a b xi iψ ψθ θ; , ; ,− = −0 0

where ( )f x , in general case, is a complex function, ( )[ ]( ) ( )U f x a b U a bψ ; , ,≡ , z ∈C ,

c ∈ +R , x0 ∈R  and [ ]θ π∈ 0 2, . If a wavelet with compact support is used, then local

modifications of the shape affect only locally the wavelet representation. This property is
particularly important when partial occlusion occurs.
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Fig. 2.1.14. Examples of mother wavelets: a) the Daubechies-4 wavelet basic function; b)

the Daubechies-6 wavelet basic function.

Different shape properties can be obtained from the wavelet representation. The basic idea
of such shape analysis is to find the vertical maxima lines of the wavelet representation. The

a b
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set of all vertical maxima lines is called the skeleton of the wavelet representation (Fig.
2.1.15b). The scale-space lifetime of each maxima line or, alternatively, their length can be
used as a measure of their relevance. Most relevant maxima lines correspond to the dominant
points (corners) on the analyzed contour.
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Fig. 2.1.15. Wavelet analysis: a) continuous wavelet transform (using 'Sombrero' wavelets)
of the normalized tangent-angle function φX t* ( )  shown in Fig. 2.1.10b; b) skeleton of the
wavelet transform. Calculations were performed by MatLab using WaveLab package
[2.1.29].

Another interesting application of wavelet representation is the analysis of natural scales of a
contour. Such analysis can be hardly carried out by standard methods of curvature analysis
because the perceived patterns on the contour can be characterized not only in terms of local
features, but also by more global ones such as the organization of the local features, their
periodicity, modulations, etc. The natural scale can be characterized by searching the
horizontal maxima lines.

Fractal analysis is another example of what can be done using wavelet representation of the
contour function. For this purpose the contour complex function ( ) ( ) ( )z l x l iy lX X X= +
should be used. Of course, the corresponding wavelet transform coefficients ( )U p p1 2,
will be also complex and their modules ( )U p p1 2,  should be used for the fractal analysis.

Shape curvature scale space representation

A curvature scale space representation [2.1.30-2.1.33] is a multi-scale organization of the
invariant geometrical features such as the curvature zero-crossing points of a planar curve
(actually, only closed contours will be considered here). To compute it the contour
parametric function ( )c lX  and the contour curvature function ( )κ X l  are used. The evolved

a b
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version of the contour C  is defined as ( ) ( )( )C X l Y lσ σ σ= , , ,  where

( ) ( ) ( )X l x l g l, ,σ σ= ⊗ , ( ) ( ) ( )Y l y l g l, ,σ σ= ⊗ ,

⊗  is the convolution operator and ( )g l, σ  denotes a one-dimensional Gaussian kernel of
width σ :
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Then the curvature function ( )κ l  for the evolved contour Cσ  is calculated as

( ) ( ) ( ) ( ) ( )
( ) ( )( )κ σ

σ σ σ σ

σ σ
l

X l Y l X l Y l

X l Y l
,

, , , ,

, ,
=

′ ′′ − ′′ ′

′ + ′2 2 3 2 .

The process of generation the ordered sequence of evolved contours from a contour C  is
called the evolution of the contour C . The function defined implicitly by ( )κ σl, = 0  is the
curvature scale space image (cssi) of C . It can be represented graphically as a binary image (Fig.
2.1.16b) in which each row corresponds to a specific value of σ  and each column to a
specific value of l . Often the normalized arc length parameter which is defined on [ ]0 1, , is
used instead of l .
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Fig. 2.1.16. a) the contour of a figure; b) curvature scale space image of the contour.
Calculations were performed by MathCAD.

The curvature scale space image of a contour is a convenient shape representation which can
be useful for such problems as shape recognition and matching, overlapping objects shape

a b
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extraction, etc. This representation is invariant under figure translation. Size changes of
analyzed figure result in re-sizing of the corresponding cssi in the vertical direction, rotation
itself of the figure changes nothing, but change of the starting point causes a circular shift of
the corresponding cssi in horizontal direction whereas reflection of the figure results in
reflection of its cssi. The method is robust to noise, small distortions on the contour do not
change corresponding cssi too much.

2.2. Set theory approach

A large variety of methods of treating a figure in the sense of the set theory and mathematical
morphology are available. The simplest methods are based on obtaining different geometrical
shape rations as discussed below. If the aim is discrimination and classification, the use of
shape ratio is frequently equivalent to or even more effective than more complicated
methods. As an alternative to the contour functions it is possible to introduce some other
functions describing different figure properties. Of particular interest are the chord length
distribution function and the spherical erosion function. Also some ideas of the theory of
random sets can be used for form statistics. Finally, sets (figures) can be considered in the
sense of fractal geometry as described below.

2.2.1. Simple geometrical shape parameters

There are many shape ratios describing certain geometrical properties. The following figure
parameters [2.2.1.-2.2.11] are often used (Fig. 2.2.1):

• ( )A X  is the area of the figure X ;

• ( )P X  is the perimeter of the figure X ;

• ( )D XA  and ( )D XP  are the diameters of circles with area ( )A X  and with perimeter
( )P X , respectively: ( ) ( )D X A XA = 2 π  and ( ) ( )D X P XP = π ;

• ( )F Xx , ( )F Xy , ( )F Xmin  and ( )F Xmax  are the orthogonal projections of the figure
X  on the x  and y  axes and the minimal and the maximal orthogonal projections of

the figure on a line, respectively, they also are known as Feret's diameters. In practice the
maximal Feret's diameter is often used. It can be defined using coordinated of the
contour of the figure X  as

( ) ( ) ( ) ( ) ( )F X x x y y x y x y Xi j i j i i j jmax sup : , , ,= − + − ∀ ∈







2 2
;
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• ( )B X  is the breadth of the figure X  for a given direction; physically it is the same as,
for example, ( )F Xx  for a given orientation of the figure X ;

X
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Fy

Fmax

Fmin

 

star X

 

conv X

X R(α)

Rout

Rin

α
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be

X

ae Θ

 

FL

FW

Fig. 2.2.1. Examples of different geometrical parameters: a) Feret's diameters; b) definition
of the 'star' of the figure; the non-shaded part of the figure is visible from O  and forms the
star with respect to O ; c) the convex hull for the given figure; d) the largest disc in X  and
the smallest disc which completely includes X ; ( )R α is the distance from the center of
gravity O  of the figure X  to its boundary point in a given direction α ; e) ( )a Xe  and

( )b Xe  are the lengths of the long and short semi-axes of the ellipse with area ( )A X
and perimeter  ( )P X ; f) fiber length and fiber width.

• ( )MD X  is Martin's diameter - the distance between opposite sides of the figure X
measured crosswise of the figure and on a line bisecting the figure's area; ( )MD Xx  and

a b c

d e f
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( )MD Xy  are Martin's diameters for horizontal and vertical directions, respectively;

• ( )S X  is the so-called 'central symmetrization' of the figure X: ( ) ( )S X X X= ⊕1 2
where X  is the set reflected at the origin, { }X x x X= − ∈: ;

• conv X  is the convex hull of X ;

• star X  is the part of X  seen from a random point in X ; particularly, this parameter is
useful when physically important point in the figure X  is chosen to be the origin point;

• ( )R Xin  and ( )R Xout  are the radii of the largest disc in X  and the smallest disc which
completely includes X ;

• ( )R X  is the distance from an origin point in the figure X  to its boundary point for a
given direction; ( )R X  is the average distance for all possible directions for a given
point; particularly, this parameter is useful when a physically important point in the
figure X  is chosen to be the origin point;

• ( )a Xe  and ( )b Xe  are the lengths of the long and short semi-axes of the ellipse with
area ( )A X  and perimeter ( )P X :

( ) ( ) ( )( ) ( )a X X X A Xe = + −α α π2
, ( ) ( ) ( )( )b X A X a Xe e= π  where

( ) ( ) ( )( )α π πX A X P X= +1
3 ;

• ( )a Xr  and ( )b Xr  are the lengths of the long and short semi-axes of the radial-
rhombus of area ( )A X  and mean radius-vector ( )R X :

( ) ( ) ( )( )a X R X R Xr = + 3σ , ( ) ( ) ( )( )b X R X R Xr = − 3σ  where

( )( ) ( ) ( )( )σ πR X A X R X= − 2 ;

• ( )FL X  and ( )FW X  are the fiber length and fiber width of the figure X ;

• ( )x X  and ( )y X  are the coordinates of the center of gravity (also called center of mass
or centroid); they are determined just by averaging the coordinates of each point of the
figure X  as

( )
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( )x X x A Xi
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=
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∑
, : ,
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;

• Orientation of the figure can be characterized in terms of the moments about the x  and
y  axes as
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The following ratios [2.2.1-2.2.11] describe different shape properties (Fig. 2.2.2):

• The area-perimeter ratio (also known as form factor or projection sphericity) ( ) ( )( )4
2πA X P X

characterizes deviations of the figure X  from a circular form. For any disc it equals to 1
while for all other figures it is less than 1 - the smaller the ratio is, the greater the
deviation from circular shape. The reciprocal of this expression is called the circularity
shape factor. Sometimes this parameter is used in the form ( ) ( )( )1 4 2− πA X P X .

• Wadell's circularity shape ratio ( ) ( )D X F XA max  is also equal to 1 for a disc, otherwise it is
less than 1.

• Drainage-basin circularity shape ratio is ( ) ( )A X D XP . It is equal to 1 for a disc, otherwise it
is less than 1.

• Another Wadell's ratio which defines degree of circularity, is ( ) ( )2 πA X P X . Actually, it
is just the square root of the area-perimeter ratio. The reciprocal of this expression is the
Horton's compactness factor.

• Another Wadell's sphericity ratio  is ( ) ( )D X D XA out . A similar ratio is Tickell's ratio in the

form ( ) ( )( )( )4
2

A X D Xoutπ which is, actually, squared Wadell's sphericity ratio.

• Pentland's projection sphericity ratio is ( ) ( )( )( )4
2

A X F Xπ max .

• Fischer's angularity ratios are

( )αi
i

X∑ 3600  and ( ) ( )β γj
j

k
k

X X∑ ∑
where ( )α i X  are angels subtending noncurved parts of the contour of the figure X,

( )β j X  are angels subtending convex parts of the contour of the figure X  and ( )γ k X
are angels subtending plane parts of the contour of the figure X .

• Wadell's roundness factor is

( ) ( )( )r X nR Xi
i

n

in
=
∑

1

where ri  are the radii of the curvature at n  points of large curvature on the contour of
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X . For a disc it is 1, otherwise it is less than 1.

• Pirard's roundness factor is

( ) ( )( ) ( )1 1 1
2

1

+ −
=
∑ R X r X nin i
i

n

where ri  is the radius of the largest inscribed disc in the figure X crossing the i th  point
of the contour of the X .

• Wentworth's roundness ratio is ( ) ( ) ( )( )4r X F X B Xmax +  where ( )r X  is radius of the
curvature of a most convex part of the contour of X  and ( )B X  is the breadth of X
measured orthogonal to the line ( )F Xmax .

• Cailleux's roundness ratio is ( ) ( )2r X F Xmax .

• The rugosity coefficient is defined as ( ) ( )P X P conv X .

• The elongation factor ( ) ( )B X F Xmax  where ( )B X  is the breadth of X  measured
orthogonal to the line ( )F Xmax , characterizes the elongation of the figure X .

• Another elongation factor is ( ) ( )F X B Xmin  where ( )B X  is the breadth of X  measured
orthogonal to the line ( )F Xmin .

• Yet another elongation factor is ( ) ( )FL X FW X .

• Symmetry factor of Blaschke is ( ) ( )( )1− A X A S X . It equals to 1 for symmetric convex
figures, while, for example, for triangles it is 1

3 .

Roundness

Surface texture

Shape

Fig. 2.2.2. Illustration of shape, texture and roundness of a figure.

• Convexity ratio (also known as solidity) ( ) ( )A X A conv X  characterizes deviations from
convexity. Clearly, a convex figure X  has the convexity factor 1, while in all other cases
it is less than 1.
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• Another convexity ratio ( ) ( )( ) ( )( )A X A star X A X−  also characterizes deviations from
convexity. For convex sets it is zero, otherwise it is greater than zero.

• Yet another convexity ratio is ( ) ( )P conv X P X . For convex sets it is 1, otherwise it is
less than 1.

• Feret's ratio (also known as an aspect ratio) is ( ) ( )F X F Xmin max . It characterizes
dimensionality of the figure X .

• Diameters ratios are ( ) ( )MD X F Xx x  and ( ) ( )MD X F Xy y .

• The radii ratio (also known as the inscribed circle sphericity) is ( ) ( )R X R Xin out .

• The ellipse ratio is ( ) ( )a X b Xe e .

• The radial-rhombus ratio is ( ) ( )a X b Xr r .

• The modification ratio is ( ) ( )R X F Xin max .

• The extent ratio is ( ) ( ) ( )( )A X A F X F Xx y×  where ( ) ( )F X F Xx y×  is the bounding
rectangle for a given figure X  which is obtained by rotating the figure in such a way
that ( ) ( )F X F Xx = min .

• The curl ratio is ( ) ( )F X FL Xmax .

• Medalia's dynamic shape factors are defined as ( ) ( )K X K Xa b  (the anisometry) and
( ) ( ) ( )4πK X K X A Xa b  (bulkiness) where ( )K Xa  and ( )K Xb  are the radii of gyration

about the central principal axes of the figure X .

2.2.2. Fractals in shape analysis

Application of fractal theory in shape analysis is one of the most rapidly developing modern
directions in the field of shape analysis. The fractal dimension itself is often considered as a
shape parameter describing different shape properties. There are a lot of examples of
successful applications of this theory. However, there is a list of problems related to the
methodology of the fractal dimension calculation. Thus, after brief introduction of the
concept of fractal dimension, some of these problems will be discussed in Part 3.

Definition of  fractal dimension

The Hausdorff-Besicovitch dimension [2.2.11-2.2.16] is defined as

( ) ( ){ } ( ){ }dim inf : , sup : ,H s sX X X= > = = > = ∞α α α αα α0 0 0H H

where X  is the analyzed figure and ( )H s Xα  is the (spherical) α-dimensional Hausdorff
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measure H α :

( ) ( )H s i
i

i i
i

iX r X b x r rα
α δ

αω δ= ⊂ <







→ ∑lim inf : , ,0 .

Here ωα  denotes the volume of the unit sphere in Rα  for integer α. The last equation has
the following meaning. The volume ω ωα α

0 0 1 1r r+ +...  of the figure X  is found covering X
by closed discs ( )b x ri i,  with radii smaller than a given positive number δ . Of course, there
are many such coverings; that is, there is freedom in choosing xi  and ri . But the definition
of ( )H s Xα  requires that the smallest value of ω ωα α

0 0 1 1r r+ +...  is obtained which is
denoted by ( )S Xδ

α  and ( ) ( )H s X S Xα
δ δ

α= →lim 0 . For elementary X , in the case α = 1
and α = 2 , ( )S Xδ

α  yields the length and area of X , respectively.

In practice, however, such notation of Fractal dimension can be hardly used to determine the
fractal properties of boundaries of objects. Fortunately, there are some other definitions of
fractal dimension from which practical methods of fractal dimension calculation can be
derived. For example, the notation of fractal dimension as packing dimension [2.2.11, 2.2.13,
2.2.16] in the following form is widely used. Consider the lower and upper Minkowski-
Bouligand dimension ( )dim

*M X , ( )dim *M
X . Actually, because a general inequality is

( ) ( ) ( )dim dim dim*
*M M HX X X≥ ≥ , only the notation of the lower Minkowski-Bouligand

dimension will be used:

( ) ( ){ } ( ){ }dim inf : , sup : ,
* * *M X X X= > = = > = ∞α α α αα α0 0 0M M

where the lower α-dimensional Minkowski content ( )M*
α X  is defined as

( ) ( )
M* lim infα

α
αω

X
A X

rr
r= → −

−
0 2

2

.

It has the following meaning. Let B  be a smooth curve of length ( )l B . The outer parallel
set ( )B B b rr = ⊕ 0,  is formed where ⊕  is the Minkowski addition operation. For small
r the area of Br  equals to ( )2rl B , so it can be calculated as

l B
A B

rr
r( ) lim

( )
= →0 2

where ( )A Br  is the area of the set Br . In the case of a 'rough' curve this limit does not
necessarily exist. Therefore corresponding infima and suprema are considered, which yield
for B 'lower' and 'upper' lengths:

( ) ( )
l B

A B
rr

r
* lim inf= →0 2

 and ( ) ( )
l B

A B
rr

r* lim sup= →0 2
.

By introducing a positive real number α ( 0 2< ≤α ) the lower (upper) α-dimensional
Minkowski content ( )M*

α X  is obtained.

The following formula can be used to calculate the lower Minkowski-Bouligand dimension:
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( ) ( )
dim lim sup

log
log*M r

rB
A B

r
= − →2 0 .

The method, which is based on direct application of this formula, is called 'Minkowski
sausage' method. There are some other important formulae which can be used to calculate
fractal dimension:

( ) ( )
dim lim sup

log
log*M r

rB
M B

r
= − →0  and ( ) ( )

dim lim sup
log

log*M r
rB

Q B
r

= − →0

where ( )M Br  is the maximal number of open discs of radius r and centre in B  that do not
overlap; ( )Q Br  is the number of squares containing points of B . First equation is directly
related to 'hand and dividers' method which will be discussed later, and the last equation is
related to box-counting method.
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