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Abstract

This document presents a design methodology the aim of which is to provide a framework for
constructing machine vision systems. Central to this approach is the use of empirical design techniques
and in particular quantitative statistics. The methodology described herein underpins the development
of the TINA [26] open source image analysis environment which in turn provide practical instantiations
of the ideas presented.
The appendices form the larger part of this document, providing mathematical explanations of the

techniques which are regarded as of importance. A summary of these appendices is given below;

Appendix Title

A Maximum Likelihood
B Common Likelihood Formulations
C Covariance Estimation
D Error Propagation
E Transforms to Equal Variance
F Correlation and Independence
G Modal Arithmetic
H Monte-Carlo Techniques
I Hypothesis Testing
J Honest Probabilities
K Data Fusion
L Receiver Operator Curves
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1 Background

Our approach to the construction and evaluation of systems is based upon what could be regarded as a set of self
evident propositions.

• Vision algorithms must deliver information allowing practical decisions regarding interpretation of an image.

• Probability is the only self-consistent computational framework for data analysis, and so must form the basis
of all algorithmic analysis processes.

• The most effective and robust algorithms will be those that match most closely the statistical properties of
the data.

• A statistically based algorithm which takes correct account of all available data will yield an optimal result1.

Attempting to solve vision problems of any real complexity necessitates, as in other engineering disciplines, a
modular approach (a viewpoint popularised as a model for the human vision system by David Marr [16]). Therefore
most algorithms published in the machine vision literature attend to only one small part of the “vision” problem,
with the implicit intention that the algorithm could form part of a larger system2. What follows from this is that
bringing these together as components in a system requires that the statistical characteristics of the data generated
by one module match the assumptions underpinning the next.

In many practical situations problems cannot be easily formulated to correspond exactly to a particular compu-
tation. Compromises have to be made, generally in assumptions regarding the statistical form of the data to be
processed, and it is the adequacy of these compromises which will ultimately determine the success or failure of
a particular algorithm. Thus, understanding the assumptions and compromises of a particular algorithm is an
essential part of the development process. The best algorithms not only model the underlying statistics of the
measurement process but also propagate these effects through to the output. Only if this process is performed
correctly will algorithms form robust components in vision systems.

The evaluation of vision systems cannot be separated from the design process. Indeed it is important that the system
is designed for test by adopting a methodology within which performance criteria can adequately be defined. When
a modular strategy is adopted, system testing can be usefully considered as a two stage process [19] (summarised
in figure 1);

• the evaluation of the statistical distributions of the data and comparison with algorithmic assumptions in
individual modules; technology evaluation,

• the evaluation of the suitability of the entire system for the solution of a particular type of task; scenario
evaluation.

The process of scenario evaluation is often time consuming and not reusable. The process of technology evaluation
is complex and involves multiple objectives, however the results are reusable for a range of applications. It therefore

1Where the definition of optimal can be unambiguously defined by the statistical specification of the problem.
2Though it could be argued that many researchers have lost focus on the bigger problem and thus the true motivations of a modular

approach.
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Figure 1: Scenario and Technology evaluation in a two stage statistical data analysis system.

merits effort and should be attempted. Ideally, we would like to be able to specify a limited set of summary variables
which define the requirements of the input data and the main characteristics of the output data, in a manner similar
to an electronic component databook [25]. However, it must be remembered that it is the suitability of the output
data for use in later modules which defines performance, and in some circumstances it may not be easy (or even
possible) to define performance independent of practical use of the data. For instance, problems can arise when
the output data of one algorithm is to be fed into several subsequent algorithms, each having different or even
conflicting requirements. The most extreme example of this is perhaps scene segmentation where, in the absence
of a definite goal, a concise method for the evaluation of such algorithms is likely to continue to be a challenge [22].

Machine vision research has not emphasised the need for (or necessary methods of) algorithm characterisation.
This is rather unfortunate, as the subject cannot advance without a sound empirical base [11]. In our opinion this
problem can generally be attributed to one of two main factors; a poor understanding of the role of assumptions
and statistics; and a lack of appreciation of what is to be done with the generated data. The assumptions behind
many algorithms are rarely clearly stated and it is often left to the reader to infer them3. The failure to present
clearly the assumptions of an algorithm often leaves the reader confused as to the novel or valid aspects of the
published research and can give the impression that it is possible to create good algorithms by accident rather
than design. In addition, the inability to match algorithms to tasks may lead those who require practical solutions
to real problems to conclude that little (if anything) published in this area really works. When in fact, virtually
all published algorithms can be expected to work, provided that the input data satisfy the assumptions implicit in
the technique. It is the unrealistic nature of these assumptions (e.g. noise free data) which is more likely to render
algorithms useless.

The following is a description of a methodology for the design of vision module components. This methodology
focuses on identifying the statistical characteristics of the data and matching these to the assumptions of particular
techniques. The methods given in the appendices have been drawn from over a decade of vision system design
and testing, which has culminated in the construction of the TINA machine vision system [26]. These include
a combination of standard techniques and less standard ones which we have been developed to address specific
problems in algorithm design.

2 Technology and Scenario Evaluation

There are several common models for statistical data analysis, all of which can be related at some stage to
the principle of maximum likelihood (appendix A). This framework provides methods for the estimation and
propagation of errors, which are essential for characterising data at all stages in a system. Likelihood based
approaches begin by assuming that the data under analysis conforms to a particular distribution. This distribution
is used to define the probability of the data given an assumed model (appendix B).

3A process we have previously called “inverse statistical identification” an allusion to the analogous problem of system identification
in control theory.
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Example Task Data Error Assumption

Basic Data Images Uniform random Gaussian
Statistical Analysis Histograms Poisson sampling statistics
Shape Analysis Edge location Gaussian perpendicular to edge

Line fits Uniform Gaussian on end-points
Motion Corner features Circular (Elliptical) Gaussian
3D Objection Location Stereo data Uniform in disparity space

Table 1: Standard error model assumptions.

2.1 Input data

The first step in evaluating an algorithmic module is identification of the appropriate model and empirical con-
firmation of the distribution with sample data. Appropriate methods for this task include; correlation analysis,
histogram fitting and the Kolmogorov-Smirnov test [24]. The interpretation of the results from such processes re-
quire knowledge of the consequences of deviation from the expected distribution. In general, the greatest problems
are caused by outliers (see below) although, the closer the data distributions conform to the assumed model, the
better the expected results. Assumptions which prove valid for one algorithm, can often prove useful in the design
of new algorithms. Some distributions commonly used in the machine vision literature are listed in table 1.

Although there are no general restrictions on the shape of these distributions the most common are Gaussian,
Binomial, Multinomial and Poisson. These correspond to commonly occurring data generation processes. The
central limit process ensures that the assumption of Gaussian distributed data forms the basis of many algorithms.
This leads to tractable algorithms as the log-likelihood formulation of a Gaussian assumed model often takes
the particularly simple form of a least-squares statistic, which can often be formulated as a closed form solution
(appendix B). It is therefore useful to know that certain non-linear functions will transform the other common
distributions to a form which approximates a Gaussian with sufficient accuracy to enable least-squares solutions
to be employed.

Unfortunately, most practical situations generate data with long tailed distributions (outliers). The problems
associated with outliers in data analysis are well known. However, what appears less well understood is the
reason for the complete lack of closed form solutions based upon a long tailed distribution. By definition only a
simple quadratic form (or monotonic mapping thereof) for the log-likelihood, can be guaranteed to have a unique
minimum. Long tailed (non-Gaussian) likelihood distributions inevitably result in multiple local minima which
can only be located by explicit search (e.g. the Hough transform) or optimisation (e.g. gradient descent).

Other assumptions in the likelihood formulation generally include those of data independence. Independence can
be confirmed by plotting joint distributions. Uncorrelated data will produce joint distributions which are entirely
predicted by the outer product of the marginal distributions (appendix F). Correlations (the lack of independence)
in data can have several consequences. Strong correlations may produce suboptimal estimates from the algorithm
and covariances may not concisely describe the error distribution.

2.2 Output data

The next step in module analysis is to estimate the errors on the output data. If the output is the result of a log-
likelihood measure then errors can be computed using covariance estimation (appendix C). Covariance estimation
is possible even in the presence of outliers, provided that a robust kernel is used [17]. If the output quantities
from a module are computed from noisy data the errors on the results can be calculated using error propagation
(appendix D). Both of these theoretical techniques assume Gaussian distributed errors and locally linear behaviour
of the algorithmic function.

These assumptions require validation (i.e. checks to ensure that the theory is an accurate representation of reality),
which can be achieved using Monte-Carlo approaches (appendix H). Once again, techniques such as histogramming,
fitting and Kolmogorov-Smirnov tests are useful. High degrees of non-linear behaviour can be addressed using a
technique we call modal arithmetic [30] (appendix G). Non-linear transformation of estimated variables may be
necessary in order to make better approximations to Gaussian distributions. It may also be necessary to combine
variables in order to eliminate data correlation. The definition of the parameters passed between algorithms
can be substantially different to naive expectation e.g. 3D data from a stereo algorithm is best represented in
disparity space (appendix E). Selecting data representations which provide appropriate descriptions of statistical
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distributions is of fundamental importance 4. Notice, the evaluation process has a direct influence on the process
of system design, underscoring the earlier statements that system design and performance evaluation cannot (and
should not) be treated separately.

In many cases the division of tasks into modules will be driven by the statistical characteristics of the processed data
and cannot be specified a priori without a very clear understanding of the expected characteristics of all system
modules. Given the source of data typical of machine vision applications it is also very likely that algorithms will
produce outlier data which cannot be eliminated by transformation or algorithmic improvement and will therefore
require appropriate (robust) statistical treatment in later modules (see appendix L).

A rigid application of the above design and test process (see figure 2) will produce verifiable optimal outputs from
each module. Ultimately however, we will need to know if this data is of sufficient quality to achieve a particular
task, a process we will call scenario evaluation. Under many circumstances it should be sufficient to determine
the required accuracy of the output data in order to achieve this task. Alternatively, the covariance estimates from
the technology evaluation could be used to quantify the expected performance of the system on a per-case basis.

Statistical measures of performance can be obtained by testing on a representative set of data. We would anticipate
the need to compute the probability of a particular hypothesis, either as a direct interpretation of scene contents
or as the likely outcome of an action (appendix I). Such probabilities are directly testable by virtue of being
honest probabilities (appendix J). The term honest simply means the computed probability values should directly
reflect the relative frequency of occurrence of the hypothesis in sample data (classification probabilities P (C|data)
should be wrong 1− P (C|data) of the time). Tested hypotheses, such as a particular set of data being generated
by a particular model, should have a uniform probability distribution. Direct confirmation of such characteristics
provide powerful tools for the quantitative validation of systems and provide mechanisms for self test during use.

Often, we will need to construct systems which are not simply a series of sequential operations. It is quite likely
that vision modules might provide evidence from several independent sources. Under these conditions we will need
to perform a data fusion operation. Within the probabilistic framework described above there are three ways of
achieving this; combination of probability (using a learning technique such as a neural network), combination of
likelihoods (using covariances), and combination of hypothesis tests. All three of these are described in greater
detail in appendix K.

3 Identifying Candidate Modules from the Literature

Armed with the above methodology we are in a position to evaluate work in the machine vision literature in terms
of its likely suitability for use in a vision system. In fact we can generate a short list of questions which exemplify
those we should attempt to answer when evaluating a module for inclusion in a system.

• Does the paper make clear the task of the module?

• Are the assumptions used in algorithm design stated?

• Is the work based upon (or related to) a quantitative statistical framework?

• Are the assumed data distributions realistic i.e. representative of the data available in the considered situa-
tion?

• Has the computation of covariances been derived and tested?

• Does the theoretical prediction of performance match practical reality?

• Is the output data in a suitable form for use in any subsequent system?

The poor intersection between this list and general academic interests in this area (such as novelty and mathematical
sophistication) underscores the main problems faced by those attempting to construct practical systems.

Notice that this list does not include system testing on typical image datasets, as that would be regarded as
scenario rather than technology evaluation. Scenario evaluation, without considering the statistical characteristics
of the data, is likely to be of much less value in the development of re-usable modules as the results will be task
specific. Unfortunately, when performance characterisation is carried out in the literature it is very often a scenario
evaluation. This goes against the implied assumption that most vision research is ultimately intended for use in a
larger system.

4yet is often overridden by preconceived ideas of algorithm design.
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Figure 2: Technology evaluation flow chart. This diagram identifies the major design decisions which must be
addressed in order to deliver quantified outputs from an algorithm. Transforms are suggested at various stages
in order to solve problems associated with non-Gaussian behaviour. The label Bootstrap is intended to refer to
custom made statistical measures constructed from sample data.

4 Summary and Conclusions

This document suggests a quantitative statistical approach to the design and testing of machine vision systems
which could be considered as an extension of methodologies suggested by other authors [3, 12]. We have focused
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on the use of likelihood and hypothesis testing paradigms and it would be natural for a reader familiar with the
machine vision literature to feel that we have missed out other approaches which have (or have had) a higher
profile in the literature (e.g. computational geometry and image analysis as inverse optics). However, we would
argue that for the modular approach to system building to succeed we must have appropriate control over the
statistical distributions generated during analysis. This is possible with likelihood based techniques because they
enable the construction of measures to determine the best interpretation of the data (such as least squares) and
also allow quantitative predictions to be made of the stability of estimated parameters (such as covariances). The
machine vision problem, therefore, does not stop once a closed form solution is found (see [13] for a discussion of
the use of statistics in closed form solutions). Inevitably, to acquire quantitative data for use in a system, error
analysis will be required. This difficult step is often missing in the work found in the literature, yet attempting to
do it can completely alter our understanding of the apparent value or even validity of the approach. The work of
Maybank [15] demonstrated exactly this point with regard to the use of affine invariants for object recognition.

The reader may at this point feel that there is a broader context for probability theory than likelihoods and
hypothesis testing. In particular likelihood based techniques have well known limitations, such as bias in finite
samples [8]. The problem of model selection [28] is endemic in the machine vision area and likelihoods cannot
be directly compared between two different model hypotheses. Approaches which aim to directly address these
issues are thus acceptable extensions to the above methodology. However, some popular areas of probability theory
do not (at least yet) have comparable quantitative capabilities (e.g. Bayesian approaches) and may therefore be
unsuitable for system building. We have made an attempt to summarise these issues in [5]. It remains to be seen
whether advocates of these approaches and others (such as Dempster-Schafer theory) are able to address these
issues.

Other approaches to algorithm design use methods which are based upon apparently different principles, such as
entropy and mutual information [31]. However, we regard these as only alternative ways to formulate problems and
believe that most experienced researchers would accept that all approaches should be reconcilable with probability
theory. Thus if there already exists a likelihood based formulation of the technique, this should be taken as
the preferred approach. Obviously, if the research community as a whole accepted this viewpoint many papers
would already have been written and presented differently. As the construction of systems from likelihood based
formulations is generally likely to require optimisation of robust statistics, generic algorithms for the location of
multiple local optima should be regarded as a fundamental research issue. So too should the problem of covariance
estimation from common optimisation tasks and popular algorithmic constructs, (such as Hough transforms), which
have already been shown to be consistent with likelihood approaches [23, 1].

Many attempts at algorithmic evaluation in the literature focus on the specification of particular performance
metrics. Although these metrics may give some indication as to the basic workings of an algorithm, quantitative
evaluation should set as the ultimate goal an understanding of the performance of the system. Performance metrics
for modules should therefore be specified with this in mind.

Non-quantitative evaluation is probably of more use in the early stages of algorithm construction than during
the final integration into a system. However, in the methodology described a key aspect is the identification
of assumptions. Knowledge of these assumptions (and suitable methods for determining their validity) allows
comparisons of algorithms to be carried out at the theoretical level. Also, we should not be surprised when
algorithms which are built upon the same set of founding assumptions within a sensible probabilistic framework,
give near identical performance. This has been well illustrated in several pieces of work including that by Fisher
et. al [10], where alternative techniques for location of 3D models in 3D range data were found to give equivalent
results to within floating point accuracy. If careful statistical analysis of data did not give this result then it
would be an indication that probability theory itself was not self-consistent. Also, when performing comparative
testing of modules we should be aware that algorithmic scope, as determined by the restrictions imposed by the
assumptions, should be taken into account in the final interpretation of results. Algorithms which give apparently
weaker performance on the basis of performance metrics may still be more applicable for some tasks. A simple
example of this is that least squares fitting will generally give a better bounded estimate of a set of parameters
than robust techniques, yet robust techniques are essential in the presence of outliers. An evaluation of these
two techniques in the absence of outliers would incorrectly conclude that least-squares was always more accurate.
Clearly this result is of limited use when building practical systems.
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A Maximum Likelihood

A more detailed treatment of the theory and techniques of Maximum Likelihood statistics can be found in [8]. A
summary of the theory is presented here for completeness.

For n events with probabilities computed assuming a particular interpretation of the data Y (for example a model)

P (X0X1X2...Xn|Y )P (Y ) = P (X0|X1X2...XnY )P (X1|X2...XnY )......P (Xn|Y )P (Y )

Maximum Likelihood statistics involves the identification of the event Y which maximises such a probability. In
the absence of any other information the prior probability P (Y ) is assumed to be constant for all Y . For large
numbers of variables this is an impractical method for probability estimation. Even if the events were simple binary
variables there are clearly an exponential number of possible values for even the first term in P (XY ) requiring
a prohibitive amount of data storage. In the case where each observed event is independent of all others we can
write.

P (X|Y ) = P (X0|Y )P (X1|Y )P (X2|Y )...P (Xn|Y )

This is a more practical definition of joint probability but the requirement of independence is quite a severe
restriction. However, in some cases data can be analysed to remove these correlations, in particular the use of
an appropriate data model (such as in least squares fitting) and processes for data orthogonalisation (including
principle component analysis). For these reasons all common forms of maximum likelihood definitions assume data
independence.

Probability independence is such an important concept it is worth defining carefully. If knowledge of the probability
of one variable A allows us to gain knowledge about another event B then these variables are not independent.
Put in a way which is easily visualised, if the distribution of P (B|A) over all possible values of B is constant for
all A then the two variables are independent. Assumptions of independence of data can be tested graphically by
plotting P (A) against P (B) or A against B if the variables are directly monotonically related to their respective
probabilities.

On a final point. We have derived maximum-likelihood here as a subset of Bayes theory. This may lead to the
natural assumption that re-inclusion of the prior probabilitites (as a function of parameter value) is an appropriate
thing to do. However, one of the advantages of the likelihood formulation is that the optimum interpretation is
invariant to the choice of equivalent paramterisation of the problem (though not invariant to choice of measurement
system see appendix E). For example we can represent a rotation matrix as a quaternion or as rotation angles,
the optimum representation (and therefore the equivalent rotation matrix) will always be defined at an equivalent
(statistical) location. If however we re-introduce the Bayes priors we have the problem of specifying a distribution,
and this is equivalent to saying that there is a natural representation for the model. From a quantitative perspective
such an approach can only be justified in circumstances where there is a deterministic generator of the model (such
as a fixed physical system). Following this line of reasoning one can come to the conclusion that although Bayes
theory is suitable for determining the probability associated with an optimal interpretation of the data it should
not be used for quantification unless the penalties of bias are fully understood and accounted for. Maximum
likelihood is the only way of getting an (largely) un-biased estimate of the parameters. It is reasonable to assess
the interpretation of a model choice on the basis of a set of parameters determined using the likelihood, it is
generally not reasonable to directly bias the parameter estimates using the prior probabilities if they are required
for a quantitative purpose.
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B Common Likelihood Formulations

Dealing with Binary Evidence

The simplest likelihood model is for binary observations of a set of variables with known probabilities. If we
make the assumption that the event Xi is binary with probability P (Xi) then we can construct the probability of
observing a particular binary vector X as:

P (X) = Πi(P (Xi)
Xi(1− P (Xi))

(1−Xi)

The log likelihood function is therefore

log(P ) =
∑

i

Xilog(P (Xi)) + (1−Xi)log(1− P (Xi))

This quantity can be minimised or directly evaluated in order to form a statistical decision regarding the likely
generator of X. This is therefore a useful equation for methods of statistical pattern recognition.

If we now average many binary measures of X into the vector O we can compute the mean probability of observing
the distribution O generated from P (X) as;

< log(P ) >=
∑

i

O(Xi)logP (Xi) + (1−O(Xi))log((1− P (Xi))

It should be noted that this is not the log probability that O is the same distribution as P as it is asymmetric
under interchange of O and P. To form this probability we would also have to test for P being drawn from the
distribution O. The resulting form of this comparison metric is often referred to as the log entropy measure as the
mathematical form (and statistical derivation) is analogous to some parts of statistical mechanics in physics.

Poisson and Gaussian Data Distributions

A very common problem in machine vision is that of determining a set of parameters in a model. Take for example
a set of data described by the function f(a, Yi) where a defines the set of free parameters defining f and Yi is the
generating data set. If we now define the variation of the observed measurements Xi about the generating function
with some random error we can see that the probability P (X0|X1X2...XNaY0) will be equivalent to P (X0|aY0) as
the model and generation point completely define all but the random error.

Choosing Gaussian random errors with a standard deviation of σi gives;

P (Xi) = Aiexp(
−(Xi − f(a, Yi))

2

2σ2
i

)

where Ai is a normalisation constant. We can now construct the maximum likelihood function;

P (X) = ΠiAiexp(
−(Xi − f(a, Yi))

2

2σ2
i

)

which leads to the χ2 definition of log likelihood;

log(P ) =
−1
2

∑

i

(Xi − f(a, Yi))
2

σ2
i

+ const

This expression can be maximised as a function of the parameters a and this process is generally called a least
squares fit. Whenever least squares is encountered there is implicit assumption of independence and of a Gaussian
distribution. In practical situations the validity of these assumptions should be checked by plotting the distribution
of Xi − f(a, Yi) to make sure that it is Gaussian.

Often when working with measured data we need to interpret frequency distributions of continuous variables, for
example in the form of frequency histograms. In order to do this we must know the statistical behaviour of these
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measured quantities. The generation process for a histogram bin quantity (making an entry at random according
to a fixed probability) is strictly a multi- distribution, however for large numbers of data bins this rapidly becomes
well described by the Poisson distribution. The probability of observing a particular number of hi for an expected
probability of pi is given by;

P (hi) = exp(−pi)
pki
hi!

For large expected numbers of entries this distribution approximates a Gaussian with σ =
√
hi. The limit of

a frequency distribution for an infinite number of samples and bins of infinitesimal width defines a probability
density distribution. These two facts allow us to see that the standard χ2 statistic is appropriate for comparing
two frequency distributions hi and ji for equal sized samples;

χ2 =
∑

i

(hi − ji)
2/(hi + ji)

This equation has the restriction that it is not defined in the region where hi + ji = 0. We can overcome this
problem by transforming the data to a domain where the errors are uniform by taking square roots. This process
not only reduces the Gaussian approximation error but also removes the denominator. The common form of this
is the probability comparison metric known as the Matusita distance measure LM ;

LM =
∑

i

(
√

P1(Xi)−
√

P2(Xi))
2

This can be rewritten in a second form;

= 2− 2
∑

i

√

(P1(Xi)P2(Xi))

Where the second term defines the Bhattacharyya distance metric LB ;

LB =
∑

i

√

P1(Xi)
√

P2(Xi)

For discrete signals [28];

χ2 = 4− 4
∑

i

√

hiji
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C Covariance Estimation

The concept of error covariance is very important in statistics as it allows us to model linear correlations between
parameters. For locally linear fit functions f we can approximate the variation in a χ2 metric about the minimum
value as a quadratic. We will examine the two dimensional case first where the quadratic formula is;

z = a+ bx+ cy + dxy + ex2 + fy2

This can be re-written in matrix algebra as;

χ2 = χ2
0 +∆X

TC−1
x ∆X

where C−1
x is defined as the inverse covariance matrix thus;

C−1
x =

u v
w s

Comparing this with the original quadratic equation gives;

χ2 = χ2
0 +∆X

2u+∆Y∆Xw +∆X∆Y v +∆Y 2s

where;

a = χ2
0, b = 0, c = 0, d = w + v, e = u, f = s

Notice that the b and c coefficients are zero as required if the χ2 is at the minimum. In the general case we need
a method for determining the covariance matrix for model fits with an arbitrary number of parameters. Starting
from the χ2 definition using the same notation as previously;

χ2 =
1

2

N
∑

i

(Xi − f(Yi, a))
2

σ2
i

We can compute the first and second order derivatives as follows;

∂χ2

∂an
=

N
∑

i

(Xi − f(Yi, a))

σ2
i

∂f

∂an

∂2χ2

∂an∂am
=

N
∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am
− (Xi − f(yi, a))

∂2f

∂an∂am
)

The second term in this equation is expected to be negligible compared to the first and with an expected value of
zero if the model is a good fit. Thus the cross derivatives can be approximated to a good accuracy by;

=

N
∑

i

1

σ2
i

(
∂f

∂an

∂f

∂am
)

The following quantities are often defined;

βn =
1

2

∂χ2

∂an
αnm =

1

2

∂2χ2

∂an∂am

As these derivatives must correspond to the first coefficients in a polynomial (Taylor) expansion of the χ2;

C = α−1 where α =
α11 α12 . . .
α21 α22 . . .
. . . . . . αnm

And the expected change in χ2 for a small change in model parameters can be written as;

∆χ2 = ∆aTα∆a
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Process Calculation Theoretical Error
Addition O = I1 + I2 ∆O2 = σ2

1 + σ2
2

Division O = I1
I2

∆O2 =
σ2
1

I22
+

I21σ
2
2

I42

Multiplication O = I1 . I2 ∆O2 = I2
2σ

2
1 + I2

1σ
2
2

Square-root O =
√

(I1) ∆O2 =
σ2
1

I1

Logarithm O = log(I1) ∆O2 =
σ2
1

I21

Polynomial Term O = In1 ∆O2 = (nIn−1
1 )2σ2

1

Table 2: Error Propagation in Image Processing Operations

D Error Propagation

In order to use a piece of information f(X) derived from a set of measures X we must have information regarding
its likely variation. If X has been obtained using a measurement system then we must be able to quantify the
precision of this system. Therefore, we require a method for propagating likely errors on measurements through
to f(X). Assuming knowledge of error covariance this can be done as follows;

∆f(X) = ∇fTCX∇f

The method simply uses the derivative of the function f as a linear approximation to that function. This is
sufficient provided that the expected variation in parameters ∆X is small compared to the range of linearity of
the function. Application of this technique to even simple image processing functions gives useful information
regarding the expected stability of each method (Table 2) [7].

When the problem does not permit algebraic manipulation in this form (due to significant non-linear behaviour
in the range of ∆f(X) or functional discontinuities) then numerical (Monte-Carlo) approaches may be helpful in
obtaining the required estimates of precision (appendix H).
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E Transforms to Equal Variance

The choice of a least squares error metric gives many advantages in terms of computational simplicity and is
also used extensively for definitions of error covariance and optimal combination of data (Appendices C and K
). However, the distribution of random variation on the observed data X is something that generally we have no
initial control over and could well be arbitrary and so we have the problem of adjusting the measurements in order
to account for this. In addition, we have the problem that different choices for the way we represent the data will
produce different likelihood measures. Take for example a set of measurements made from a circle, we can choose
to measure the size of a circle as a radius or as an area. However, it can be easily shown that constructing a
likelihood technique based upon sampled distributions will produce different (inconsistent) formulations for these
two representations of the same underlying data. Transferrring the likelihood from a distribution of radial errors
will not produce the impirically observed distribution for area due the non-linear transformation between these
variables. Which should we choose as correct (or are both wrong)? Initially these may be seen as separate problems,
but in fact they are related and may have one common solution. To understand this we need to consider non-linear
data transformations and the reasons for applying them.

In many circumstances it is possible to make distributions more suitable for use of standard ML formulations (eg:
least squares) by transformation g(Xi) and g(f(a, Yi)), where g is chosen so that the initial distribution of Xi maps
to an equal variance distribution (near Gaussian) in g. Examples of this for statistical distributions are the use
of the square-root transform for Poisson distributed variables (appendix B) and the asin mapping for binomial
distributed data []. However, this problem can occur more generally due to the need to have to work with quantities
which are not measured directly.

One good example of this is in the location of a known object in 3D data derived from a stereo vision system.
In the coordinate system where the viewing direction corresponds to the z axis, x and y measures have errors
determined by image plane measurement. However, the depth zi for a given point is given by;

zi = fI/(Xli −Xri)

where I is the interocular separation, f is the focal length andXli andXri are image plane measurements. Attempts
to perform a least squares fit directly in (x, y, z) space results in instability due to the non-Gaussian nature of
the zi distribution. However, transformation to (x, y, 1/

√
2z) yields Gaussian distributions and good results. In

general, observation of a dependency of the error distribution of a derived variable with that variable (in the above
case the dependency of σz on z), is very often a sign that the likelihood distribution is skewed.

Any functional dependency of the errors on a measurement is a potential source of problem for subsequent algo-
rithms. Building error estimates into the model is one possible way of attempting to solve this. This is the reason
that in the standard statistical chi-squared test for comparing observed frequencies to a model estimates it is rec-
ommended to estimate the data variance terms from theory rather than the data. In the context of an optimisation
task this is imperfect as such a process can introduce instabilities, bias and computational complexity. Ultimately,
if the errors var(Xi) have function dependences h(f(a, Yi)) then we never really know the correct distribution for a
given measurement. The only way to avoid this is to work with data which have variances which are independent
of the data value (i.e.: equal variances). For a known functional dependency h the transformation g which maps
the variable Xi to one with equal variance follows directly from the method of error propegation and is given by;

g =

∫

1

h(X)
dX

All of the transformations mentioned above can be generated from this process, including those which map standard
statistical distributions to more Gaussian ones, though the extent to which this is a general property of this method
is unclear. Ultimately the results of such transforms will need to be assessed on a case by case basis.

We are now also in a position to answer our questions regarding data representation in ML. The selection of
measured variables from the equal variance domain provides a unique solution to the problem of identification of
the source data space. Such ideas deal directly with the key problem of applying probability (which is strictly only
defined for binary events) to continuous variables by defining an effective quantisation of the problem according
to measurable difference. In addition to the numerical issues involved it may also be reasonable to conclude that
this is the only valid way of applying probability theory to continuous distributions. If this is true then it must be
said that it represents a considerable theoretical departure from commonly accepted use of these methods.
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F Correlation and Independence

Under practical circumstances the data delivered to an algorithm may be correlated. Generally, it is the job of
the model used in the formulation of the likelihood approach to account for all expected systematic correlation
up to a random independent noise process. However, likelihood formulations often assume data independence for
simplicity. Correlation produces systematic changes in the residuals of one parameter due to changes in another.
This can be visualised by producing a scatter-plot of the two variables f(x, y). In general for any two variables
to be N-correlated knowledge of one must give no information regarding the other. In terms of the scatter plot
this means that it must be possible to model the structure seen, entirely in terms of the outer-product of the two
marginal distributions:

f(x, y) = f(x)⊗ f(y)

that is, decomposable. We may wish to preprocess the data to remove these correlations using Principal Com-

ponent Analysis in order to conform to the assumption of independence.

We can define the correlation matrix:

R =
∑

i

(Xj −Xm)⊗ (Xj −Xm)

where Xj is an individual measurement vector from a data set and Xm is the mean vector for that set.

(a) original (b) rotated

Figure 3: original and rotated data distributions

It can be shown that orthogonal (linearly independent) axes correspond to the eigenvectors Vk of the matrix R.
So the solution of the eigenvector equation:

RVk = λkVk

defines the axes of a co-ordinate system Vk which decorrelates the data. The method known as Singular Value
Decomposition (SVD) [21] approximates a matrix by a set of orthogonal vectors and singular values, and it can be
shown that the singular vectors satisfy the eigenvector equation with;

λk =
1

w2
k

Thus SVD determines the axes of maximal variation within the data. A limited approximation to the full matrix
R∗

R∗ =

lmax
∑

l

1

w2
l

Wl ⊗Wl

gives an optimal approximation to the matrix R in the least squares sense (R − R∗)2, allowing the selection of a
reduced number of orthogonal descriptor variables.

An associated technique is Independent Component Analysis (ICA). This technique differs from PCA in that it
imposes higher-order independence where as PCA imposes only second order independence, i.e. decorrelation.
Thus ICA algorithms attempt to find components which are as independent of each other as is possible (given the
data).

15



G Modal Arithmetic

Sometimes the effects of non-linear calculations on data with a noise distribution affects not only the variance of
the computed quantity but also the mean value. From a likelihood point of view we can define the ideal result
from a computation as the most frequent (or modal) value that would have resulted from data drawn from the
expected noise distribution. We can find such values directly, via the process of Monte-Carlo (appendix H), but
we can also predict these values analytically. We have termed the algorithm design technique which addressed this
issue modal arithmetic.

The general method of modal arithmetic for a measured value with distribution D(x) and a non-linear function
f(x) would be to find the solution xmax of

∂[
D(x)

∂f(x)/∂x
]/∂x = 0

with the modal solution of f(xmax). Modal arithmetic is unconditionally stable, as peaks in probability distri-
butions cannot occur at infinity. It also has much similarity with some approaches in statistics which advocate
the use of the mode rather than the mean as the most robust indicator of a distributed variable. The simplest
example of this is for image division where small errors on the data produce instabilities in computations involving
large quantities of data. Error propagation shows that a small change in the input quantity ∆x will give an error
on the corresponding output of

∆y =
∆x

x2

which is clearly unstable for values of x which are comparable to its error. This problem can be understood
better by considering the distribution of computed values from the range of those available for input. We start by
assuming a Gaussian distribution for the denominator.

Px = A exp(−(x − x0)
2/2σ2)∆x

Where x0 is the central value of x with a standard deviation of σ. If we take a small area of data from the
probability distribution for x (i.e. Px = D(x)∆x), we can associate this with an equal number of solutions in the
output space y (i.e. Py = D(y)∆y) (figure 4 (i) and (ii)) giving:

D(y) = A x2exp(−(x − x0)
2/2σ2)

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

y

0

y

(b)

y= 1/x

x0

(c)

y

X

X max +

max -

x

x

0

x

(a)

area = P  
area = P  

D D

D

Figure 4: Probability Distributions for a noisy denominator.

This expected probability distribution for y as a function of x (figure 4 (iii)) can be differentiated to find its
maxima.

∂D(y)/∂x = 2A exp(−(x − x0)
2/2σ2)(x − x2(x − x0)/2σ

2)

Setting this to zero we can determine the modal values of this distribution:

x2 − x0x− 2σ2 = 0 with xmax =
x0 ±

√

x2
0 + 8σ2

2
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which correspond to the positive and negative peaks due to the distribution of x spanning zero (figure 4 (i)). If
we were to ask which value of y would be most likely to result from the division then the answer would be 1/xmax

selected with the same sign as the input value x0. Taking this value as a replacement for the denominator provides
a maximum likelihood technique of stabilising the process of division using knowledge of measurement accuracy and
could best be described as modal division. Modal division can be used with impunity for calculations involving
large quantities of noisy data without instability problems for values around zero, with the minimum denominator
limited to a value of

√
2σ. In previous work we were able to show that the application of modal arithmetic to

image deconvolution regenerated the standard likelihood based technique of Wiener filtering [32].
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H Monte-Carlo Techniques

These techniques are used to assess the stability of compuatations due to the expected noise mechanisms present
in the data. The concept of Monte-Carlo techniques is very simple. A computer simulation is performed which
generates multiple sets of data from within the expected measurement distribution. These data are then passed
through the algorithmic computation and the distributions of resulting values around their true values accumulated.
This way both the systematic errors (bias) and statistical errors (variance) associated with the algorithm can be
assessed. This is done either by comparing these distributions with results from covariance estimation or error
propagation or by empirical construction of the dependency of the computed values on the input quantities [29].
These models can then be used to quantify the expected error distributions on the data when provided as input
to other modules.

An example of this technique would be in the assesmment of feature detection. For example a detection algorithm
would be run multiple times on an image corrupted by small noise pertebations and the resulting changes in derived
variables, such as feature orientation and location, could then be accumulated and assessed. The advantage of
such approaches is that examples of realistic images can be used as a starting point to define which features are
likely to be present, rather than defining a gold standard based upon synthetic data. It should be remembered
that this only assesses the statistical stability of the method, any differences between the detected features and the
definition of those that you were intending to detect is an entirely different matter. However, in many practical
circumstances involving adaptive systems this is often enough.

Key to the success of these techniques is the ability to generate random example of data drawn from the required
distributions. We start by using a random number 0 < x < 1 drawn from a uniform (flat) distribution. The general
technique for generating a variate from the distribution f(y) using x is to solve for y in

x =

∫ y0

−∞

f(y)dy/

∫ ∞

−∞

f(y)dy

i.e. x is used to locate a variable some fraction of the way through the integrated distribution.

For instance, a Gaussian distribution leads to the BOX MULLER method [];

y1 =
√

(−2ln(x1))cos(2πx2)

y2 =
√

(−2ln(x1))sin(2πx2)

which generates two Gaussian random deviates y1 and y2 for every two input deviates x1 and x2.

Armed with distribution generators we can provide many alternative images for statistical testing from only a few
examples of image data.

18



I Hypothesis Testing

Having made quantitative measurements from our system we will ultimately need to make decisions based upon
those measurements in comparison to some predefined model. For example, do not attempt to move the mobile
vehicle through a doorway unless the vision system estimates that it will pass. Many statistical tests are based on
the idea of generating the probability that data drawn from the expected test distribution would be more frequent
than the example under test. This approach leads to the common statistical techniques of z-scores, T tests, and
Chi-squared tests to name a few. This follows directly from the original definition of a confidence interval, due to
Neyman [18].

Such an approach to statistical analysis allows hypotheses to be tested (i.e. does the data conform to the assumed
model?) on the basis of one model at a time, in contrast to Bayesian approaches which require all possible
generators (models) of the data. In addition, such statistical tests are fully quantitative. Probabilities computed
from such statistics have the characteristic that the distribution of values drawn from the assumed model will be
flat. This is useful as a mechanism for self test. The most common form of this statistic is that for a Gaussian and
is known as the error function which is provided as a mathematical function in most languages (e.g. the erf()
library function). The Normal Distribution (see Fig. 5) is described by the probability density function:

f(x) =
1

σ
√
2π
e
−

(x−µ)2

(2σ2) (1)

where mean = µ and variance = σ2.

Mean

2 sd’s

Figure 5: The Normal Distribution

the single sided error function is defined as

erf(x) = 2

∫ x

0

f(x) dx

However, such statistics can be generated for any model for which the expected data distribution is known, using
the ordering principle. This states that the ordering of integration along the measurement axis should be defined
so that the probability density is monotonically decreasing. For the Gaussian case shown above this gives the
rather trivial result that we integrate along the standard measurement axis x away from the peak, as the function
is monotonically decreasing from x = 0. We therefore use the distribution itself to define which parameter values
are more likely to have been drawn from the model. Although this is not the only way to order the data (there are
potentialy infinite numbers of equivalent possible ordering schemes depending upon how we define our variables
e.g. x2) this is the one which gives confidence limits which are maximally compact in the chosen parameter domain.
Generally, the preferred parameter domain would be selected as the space in which x was uniformly accurate, so
that this compactness has meaning from the point of view of measureable localisation. This is sometimes referred
to as a “natural” parameterisation and is related to the concept of the equal variance transform (appendix E).

In image processing the required distributions can often be bootstrapped directly from the image (e.g. as in [6].
Under these circumstances the possibility of multi-modal density functions makes the application of the ordering
principle slightly less straightforward [5].

Finally, as the only requirement for the use of such probabilities is that they have a uniform distribution, empirical
approaches can be used to re-flatten distributions which result from imprecise analysis. Such hypothesis tests are
also easily combined using standard statistical approaches (See appendix K).
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J Honest Probabilities

The correct use of statistics in algorithm design should be fully quantitative. Probabilities should correspond
to a genuine prediction of data frequency. From the point of view of algorithmic evaluation, if an algorithm
does not make quantitative predictions then it is by definition untestable in any meaningful manner. Thus a
classifier giving a probability of a particular class as P should be wrong 1 − P of the time. Probabilities with
these characteristics have previously been referred to in the literature as honest [9]. The importance of this feature
in relation to the work presented here is that knowledge of the expected distribution for the output provides a
mechanism for self-test. For example classifier error rates can be assessed as a function of probability to confirm the
expected correlation. Some approaches to pattern recognition, such as k-nearest neighbours, are almost guaranteed
to be honest by construction. In addition the concept of honesty provides a very powerful way of assessing the
validity of probabilistic approaches. In [20] it was shown that iterative probabilitstic update schemes which drive
parability estimates to converge to 0 or 1 cannot be honest and are therefore also not optimal. In fact such schemes
demonstrate the common lack of quantitative rigor associated with use of psuedo-statistical methodology common
in this area. Unless computed probabilities can be shown to correspond to genuine frequencies of occurence then
they are of no quantitative value.

Supervised classification performance, for example object recognition, can be specified in terms of the confusion
matrix. This is table that describes the probabilities that an item of class i will be misclassified as an item of class
j for each of a set of classes. The sum of each of the rows and columns should add up to 1.0.

class 1 class 2 class 3 class 4
class 1 1.0 0.0 0.0 0.0
class 2 0.0 0.8 0.15 0.05
class 3 0.0 0.15 0.35 0.5
class 4 0.0 0.05 0.5 0.45

Table 1: Confusion Matrix

A perfect classifier would have value of 1.0 along the diagonal where i = j and zero elsewhere. However, a
real classifier would have some off-diagonal elements, as in this example. Note that the table is not necessarily
symmetrical. The classification algorithm might also specify a rejection rate at which it will refuse to produce a
valid class output. For the probabilities delivered by a classification system to be honest, the mean probability
generated for each position in the confusion matrix should agree with the relative frequency of the sampled data.
For example in the table given above class 1 should always be identified with 100% classification probability.

A technology evaluation would provide an unweighted table, but a scenario evaluation would weight the entries to
take account of the prior probabilities of the various objects, according to a particular application and the cost of
various types of error, to produce an overall number for ranking.
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K Data Fusion

An algorithm which makes use of all available data in the correct manner must deliver an optimal result. This is
not as uncommon occurrence in computer vision as may be assumed and many problems (camera calibration for
example) do have optimal solutions [27]. If this can be established for an algorithm then extensive evaluation (e.g.
on a large number of images) can be expected to prove only one thing, that the algorithm can only be bettered
by one which takes account of more data or assumes a more restricted model. Use of a more restricted model will
of course limit use of the algorithm, and any assumption which prevents the generic use of an algortihm needs to
be considered very carefully. It is all to easy to design algorithms which work (at least qualitatively) on a very
limited subset of images and this is a criticism which is often made of work in this area. Using more information
rather than assumptions to solve the problem might therefore be the preffered option. In a modular system, where
input data has been separated in order to make data processing more manageable, use of more data corresponds
to fusion of output data. For this reason quantitative methods of optimal data combination are of fundamental
importance.

Optimal Combination using Covariances

Given two estimates of a set of parameters a1 and a2 and their covariances (α1 and α2) we can combine the two
sets of data as follows;

aT = α−1
T (α1a1 + α2a2)

with;

α−1
T = α−1

1 + α−1
2

This method combines the data in the least squares sense, that is the approximation to the χ2 stored in the
covariance matrices has been combined directly to give the minimum of the quadratic form. The method can be
rewritten slightly giving

aT = a1 + α−1
T α2∆a

where ∆a = a2 − a1. In this form the method is directly comparable to the information filter form of the Kalman
filter.

Optimal Combination of Hypothesis Tests

Hypothesis test probabilities should have uniform distributions (if they are honest see appendix H). Given n
quantities each having a uniform probability distribution pi=1,n, the product p =

∏n
i=1 pi can be renormalised to

have a uniform probability distribution Fn(p) using;

Fn(p) = p

n−1
∑

i=0

(− ln p)i
i!

(2)

Proof of this relationship can be generated in the following manner. The quantities pi can be plotted on the axes of
an n dimensional sample space, bounded by the unit hypercube. Since they are uniform, and assuming no spatial
correlation, the sample space will be uniformly populated. Therefore, the transformation to Fn(p) such that this
quantity has a uniform probability distribution can be achieved using the probability integral transform, replacing
any point in the sample space p with the integral of the volume under the contour of constant p passing through
this point, which obeys

∏n
i=1 pi = constant. Generalisation of this process to non-integer numbers (which is useful

for cases where we have an effective number of degrees of freedom) and other useful results are presented in [4].

Optimal Combination from Example Data

When the area of neural networks re-emerged as a popular topic in the mid 80’s much was claimed about the
expected capabilities regarding flexibility, suitability for system identification and robustness. Most of these claims

21



were subsequently shown to be optimistic. However, one problem that neural networks are relatively good at is
non-linear data fusion. A neural network when trained on an appropriate form of data with the correct algorithm
will approximate Bayes probabilities as outputs.

The mathematics describing this process is given in [14] but a more intuitive argument is as follows. Each input
vector pattern X defines a unique point in input space. Associated with each data point is the ideal required
output, for example a binary output classification. As the number of samples grows large the number of examples
of data in the region of each point also grows large. If training with a least squares error function the target output
for each point in pattern space will be the mean of local values. For a binary coding problem the mean value is
the Bayes probability of the model given the data.

Thus when using a least squares training function and training with binary class examples in the limit of an infinite
amount of data and complete freedom in the network to map any function, the network will approximate Bayes
probabilities as outputs.

Given P (A|B) and P (A|C) can we compute P (A|BC)? We can clearly solve this problem provided these prob-
abilities are independent by simple multiplication. If however the measures are correlated there is no standard
statistical method for this process. This is unfortunate as we would expect a modular (AI) decision system to need
to solve this task. Standard neural network architectures trained in the standard way will however approximate
P (A|P (A|B)P (A|C)) for the reasons described above [2]. Provided that there is enough information in the set of
probabilities being fused to regenerate the original data the fusion process will be able to achieve optimality.
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L Receiver Operator Curves

Scenario evaluations in machine vision often result in the problem of establishing how well an algorithm can identify
a particular configuration of data. The simplest example of this problem is a feature detector. Feature detection
reliability has two elements: the probability of the detection of a true feature (True Acceptance Rate or TAR),
and the probability of the detector signalling a feature which is in fact absent (False Acceptance Rate or FAR).
These may be represented as two probability density functions (pdf): the signal and the non-signal pdfs.
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Figure 6: signal and non-signal detection pdfs

A feature detector generally has a threshold which allows a trade off to be made between the two types of error.
For a given threshold the true acceptance rate will be the area under the curve of the signal pdf and to the right
of the threshold, whereas the false acceptance rate is the area under the curve of the non-signal pdf and to the
right of the threshold. This gives rise to two extreme situations. If the threshold is set to the far left, the detector
will accept all the signal but also all non-signal, so both TAR and FAR will be high. If the threshold is set to
the far right, the detector will reject all non-signals, but also reject all true signals, so both TAR and FAR will be
low. It is important to appreciate that for detection algorithms there is always a trade off between true and false
detection.

An understanding the behaviour of a feature detection algorithm as the threshold is varied can be obtained by
plotting an ROC (receiver operating characteristic) curve.
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Figure 7: Receiver Operator Curve

In the ROC curve 5, one axis represents the True Acceptance Rate (TAR) and the other represents the False

5note that there appear to be no conventions as to the orientation of the plot
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Acceptance Rate (FAR) 6. Each runs from 0% to 100%. The performance of a given detection algorithm may be
described in terms of a line passing through various combinations of TAR and FAR. The ideal algorithm would be
one with a line that passes as close as possible to the point TAR=100% and FAR=0%. The operating point of the
algorithm along the line is determined by the setting of the threshold parameter described earlier. The setting of
the threshold is made on the basis of the consequence of each type of error (Bayes risk), and this will depend on
the use of the results and thus the application, subject to prior probabilities of the signal and non-signal.

The performance of detection algorithms is sometimes quoted in terms of the equal error rate (EER). This is
the point at which the FAR is equal to the True Reject Rate (TRR=1-TAR). This may be appropriate for some
applications in which the cost of each type of error is equal. However this is not generally the case so access to the
entire ROC curve is preferred.

In contrast to the earlier pdf diagram, on a ROC diagram the performance of different algorithms may be presented
on the same plot and thus compared. In fact algorithms with completely different threshold processes may also
be compared. For a given application (and thus TAR/FAR trade off) one algorithm may be superior to another
according to the desired position along the ROC curve. For instance algorithm B may be superior to algorithm A
when a low FAR is required. Conversely algorithm A will be preferred when a high TAR is required. Algorithm
C on the other hand provides superior performance to both algorithm A and algorithm B since for each value of
FAR, algorithm C will have a higher level of TAR.

Notice the difference between the ROC plot that presents the performance characteristics of a number of algorithms
(the result of a technology evaluation), and the decision as to which is the best and how it should be tuned, which
is based on the use of this information (scenario evaluation). Of course the ROC curve is only as good as the data
used to generate it, and a curve produced using unrepresentative data can only be misleading.

There are variants of the ROC curve. If the task is to identify the features in an image, and it is possible that
there will be more than one, then a fractional ROC (FROC) is more appropriate. This plots the total number of
false detection (since there may be more than one) against the probability of a true detection as before.

The fact that every detection algorithm involves a trade off between true and false detections has the consequence
that false detections must be tolerated by the subsequent processing stages if any reasonable level of true
detection is to be expected.

6a number of alternative forms are used such as reject rate which is (1 - acceptance rate)
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