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Abstract. A linear, discriminative, supervised technique for reducing feature
vectors extracted from image data to a lower-dimensional representation is pro-
posed. It is derived from classical Fisher linear discriminant analysis (LDA) and
useful, for example, in supervised segmentation tasks in which high-dimensional
feature vector describes the local structure of the image. In general, the main
idea of the technique is applicable in discriminative and statistical modelling that
involves contextual data.

LDA is a basic, well-known and useful technique in many applications. Our con-
tribution is that we extend the use of LDA to cases where there is dependency
between the output variables, i.e., the class labels, and not only between the input
variables. The latter can be dealt with in standard LDA.

The principal idea is that where standard LDA merely takes into account a single
class label for every feature vector, the new technique incorporates class labels
of its neighborhood in its analysis as well. In this way, the spatial class label
configuration in the vicinity of every feature vector is accounted for, resulting
in a technique suitable for e.g. image data. This spatial LDA is derived from
a formulation of standard LDA in terms of canonical correlation analysis. The
linearly dimension reduction transformation thus obtained is called the canonical
contextual correlation projection.

An additional drawback of LDA is that it cannot extract more features than the
number of classes minus one. In the two-class case this means that only a re-
duction to one dimension is possible. Our contextual LDA approach can avoid
such extreme deterioration of the classification space and retain more than one
dimension.

The technique is exemplified on a pixel-based segmentation problem. An illus-
trative experiment on a medical image segmentation task shows the performance
improvements possible employing the canonical contextual correlation projec-
tion.



1 Introduction

This paper describes a supervised technique for linearly reducing the dimensionality of
image feature vectors (e.g. observations in images describing the local gray level struc-
ture at certain positions) taking contextual label information into account (e.g. the local
class label configuration in a segmentation task). The technique is based on canonical
correlation analysis and called the canonical contextual correlation projection (CCCP).

In general, the main goal of reducing the dimensionality of feature data is to prevent
the subsequently used model from over-fitting in the training phase [9, 12]. An impor-
tant additional effect in, for example, pattern classifiers is often the decreased amount
of time and memory required to perform the necessary operations. Consequently image
segmentation, object classification, object detection, etc. may benefit from the tech-
nique, and also other discriminative methods may gain from it.

The problem this paper is concerned with is of great practical importance within
real-world, discriminative and statistical modelling tasks, because in many of these im-
age analysis and computer vision tasks the dimensionality, sayn, of the feature data
can be relatively large. For example, because it is not clear a priori what image infor-
mation is needed for a good performance in a pixels classification task, many features
per pixel may be included, which results in a high-dimensional feature vector. This
already happens in 2-dimensional image processing, but when processing large hyper-
spectral images, medical 3-dimensional volumes, or 4-dimensional space/time image
data, it may even be less clear what features to take and consequently more features are
added. However, high-dimensional data often leads to inferior results due to the curse of
dimensionality [4, 12] even if all relevant information for accurate classification is con-
tained in the feature vector. Hence, lowering the dimensionality of the feature vectors
can lead to a significant gain in performance.

The CCCP is an extension to linear discriminant analysis (LDA), which is a well-
known supervised dimensionality reduction technique from statistical pattern recogni-
tion [9, 12]. LDA is capable of taking contextual information in the input variables into
account, however contextual information in the output variables is not explicitly dealt
with. The CCCP does take this information into account and therefore models this con-
textual information more accurately.

Another principal drawback of LDA is that it cannot extract more features than the
number of classes minus one [7, 9]. In the two-class case—often encountered in image
segmentation or object detection—this means that we can only reduce the dimension-
ality of the data to one, and even though reducing the dimensionality could improve
the performance it is not plausible that one single feature can describe class differences
accurately. CCCP can avoid such extreme deterioration of the classification space and
retain more than one dimension even in the case of two-class data.

LDA was originally proposed by Fisher [5, 6] for the two-class case and extended
by Rao [14] to the multi-class case. The technique is supervised, i.e., input and output
patterns which are used for training have to be provided. Quite a few linear dimension
reduction techniques have been proposed of which many are variations and extensions
to Fisher’s LDA, see [3, 9, 16]. Within the field of image classification, [1] and [13]
show how classification performance can benefit from linear dimension reduction. The
novel extension to LDA given in this paper explicitly deals with the contextual spatial



characteristics of image data. To come to this extension of LDA, a formulation of this
technique in terms of canonical correlation analysis (CCA, [11]) is used (see [9, 16]),
which enables us to not only to include the class labels of the pixel that is considered—
as in classical LDA, but also to encode information from the surrounding class labelling
structure. Related to our approach is the work of Borga [2] in which CCA is also used
as a framework for image analysis.

Finally, it is mentioned that there is a close relationship of the LDA considered here
and a form of LDA which is used for classification. The latter is also known as a linear
discriminant classifier or Fisher’s linear discriminant [9, 16]. Here, however, LDA for
dimensionality reduction is considered.

1.1 Outline

Section 2 formulates the general problem statement within the context of supervised
image segmentation. However, we stress that the technique is not restricted to this task.
Techniques like object detection or object classification can also benefit from the di-
mension reduction scheme proposed. Section 3 introduces LDA and discusses its link
to CCA. Subsection 3.4 presents the CCCP. Subsection 3.5 discusses the drawback of
obtaining too few dimensions with LDA, and explains how CCCP can overcome this
limitation. Subsection 3.6 summarizes the main approach. Section 4 presents illustra-
tive results on a lung filed segmentation task in chest radiographs. Finally, Section 5
provides a discussion and conclusions.

2 Problem Statement

To make the exposition more clear, the technique presented is directly related to the
specific task of image segmentation, and it is not discussed in its full generality.

An image segmentation task in terms of pixel classification is considered—however,
we may as well use other image primitives on a regular lattice. Based on image features
associated to a pixel, it is decided to which of the possible classes this pixel belongs.
Having classified all pixels in the image gives a segmentation of this image. Examples
of features associated to a pixel are its gray level, gray levels of neighboring pixels,
texture features, the position in the image, gray levels after linear or non-linear filtering
of the image, etc.

Pixels are denoted bypi and the features extracted from the image associated topi

are represented in ann-dimensional feature vectorxi . A classifier mapsxi to a certain
class label coming from a set ofK possibilities{l1, . . . , lK}. All pixels having the same
label belong to the same segment and define the segmentation of the image. The clas-
sifier, e.g. a quadratic classifier, Fisher’s linear discriminant, a support vector machine,
or a k nearest neighbor classifier [9, 12], is constructed using train data: example im-
ages and their associated segmentations should be provided beforehand from which the
classifier learns how to map a given feature vector to a certain class label.

Before training the classifier, a reduction of dimensionality can be performed using
the train data. This is done by means of a linear projectionL from n to d (d < n)
dimensions, which can be seen as ad×n-matrix that is applied to then-dimensional



feature vectorsxi to get ad-dimensional feature representationLx i . The matrixL is
determined using the train data. Subsequently, the feature vectors of the train data are
transformed to the lower dimensional feature vectors and the classifier is constructed
using these transformed feature vectors. The following section presents a novel way to
determine such a matrixL .

3 Canonical Contextual Correlation Projections

3.1 Linear discriminant analysis

The classical approach to supervised linear dimensionality reduction is based on LDA.
This approach defines the optimal transformation matrixL to be the one that maximizes
the so-called Fisher criterionJ

J(L) = tr((LSWL t)−1LSBL t) , (1)

whereL is thed×n transformation matrix,SW is the mean within-class covariance ma-
trix, andSB is the between-class covariance matrix. Then×n-matrix SW is a weighted
mean of class covariance matrices and describes the (co)variance that is (on average)
present within every class. Then× n-matrix SB describes the covariance present be-
tween the several classes. In Equation (1),LSWL t andLSBL t are thed×d within-class
and between-class covariance matrices of the feature data after reducing the dimension-
ality of the data tod using the linear transformL .

When maximizing (1), one simultaneously minimizes the within-class covariance
and maximizes the between-class covariance. The criterion tries to determine a trans-
form L that maps the feature vectors belonging to one and the same class as close as
possible to each other, while trying to keep the vectors that do not belong to the same
class as far from each other as possible. The matrix that does so in the optimal way, as
defined by (1), is the transform associated to LDA.

Once the covariance matricesSW andSB have been estimated from the train data,
the maximization problem in (1) can be solved by means of a generalized eigenvalue
decomposition involving the matricesSB andSW. We do not discuss these procedures
here, but refer to [3, 4, 7] and [9].

3.2 Canonical correlation analysis

This paper formulates LDA in a canonical correlation framework (see [9, 16]) which
enables the extension of LDA to CCCP. CCA is a technique to extract, from two feature
spaces, those lower-dimensional subspaces that exhibit a maximum mutual correlation
[11, 2].

To be more precise, letX be a multivariate random variable, e.g. a feature vector,
and letY be another multivariate random variable, e.g. a numeric representation of
the class label:(1,0, . . . ,0)t for class 1,(0,1, . . . ,0)t for class 2, etc. In addition, leta
andb be vectors (linear transformations) having the same dimensionality asX andY,



respectively. Furthermore, definec to be the correlation between the univariate random
variablesatX andbtY, i.e.,

c =
E(atXbtY)√

E((atX)2)E((btY)2)
, (2)

whereE is the expectation. The first canonical variatesat
1X andbt

1Y are obtained by
those two vectorsa1 andb1 that maximize the correlation in Equation (2). The second
canonical variates are those variates that maximizec under the additional constraint that
they are outside the subspace spanned bya1 andb1, respectively. Having the first two
pairs of canonical variates, one can construct the third, by taking them outside the space
spanned by{a1,a2} and{b1,b2}, etc.

One way of solving for the canonical variates more easily is as follows. First es-
timate the matricesSXX, SYY, andSXY, that describe the covariance for the random
variablesX andY, and the covariance between these variables, i.e., estimatingE(XXt),
E(YYt), andE(XYt), respectively. Subsequently, determine the eigenvectorsai of

SX := S−1
XXSXYS−1

YYSt
XY (3)

and theb j of
SY = S−1

YYSt
XYS−1

XXSXY . (4)

The two eigenvectorsa1 andb1 associated with the largest eigenvalues of the matrices
SX andSY, respectively, are the vectors giving the first canonical variatesat

1X andbt
1Y.

For the second canonical variates take the eigenvectorsa2 andb2 with the second largest
eigenvalues associated, etc. The number of canonical variates that can be obtained is
limited by the smallest rank of both multivariate random variables considered.

3.3 LDA through CCA

LDA can be defined in terms of CCA (see for example [9] or [16]), hence avoiding the
use of the Fisher criterion (1). To do so, letX be the random variable describing the fea-
ture vectors and letY describe the class labels. Without loss of generality, it is assumed
thatX is centered, i.e.,E(X) equals the null vector. Furthermore, as already suggested in
Subsection 3.2, the class labels are numerically represented asK-dimensional standard
basis vectors: for every class one basis vector.

Performing CCA on these random variables usingSX from (3), one obtains eigen-
vectorsai that span the space (or part of this space) ofn-dimensional feature vectors. A
transformation matrixL , equivalent to the one maximizing the Fisher criterion, is ob-
tained by taking thed eigenvectors associated to thed largest eigenvalues and putting
them as row-vectors in the transformation matrix:

L = (a1,a2, . . . ,ad)t .

Linear dimensionality reduction performed with this transformation matrix gives results
equivalent to classical LDA. Note that to come to this solution, an eigenvalue decom-
position ofSY is not needed.



The estimates of the covariance matrices used later on in our experiments are the
well-known maximum likelihood estimates. GivenN pixels pi in our train data set, and
denoting the numeric class label representation of pixelpi by theK-dimensional vector
yi , SXY is estimated by the matrix

1
N

N

∑
i=1

xiyt
i .

SXX andSYY are estimated in a similar way.
The CCA formulation of LDA enables us to extend LDA to a form of correlation

analysis that takes the spatial structure of the class labelling in the neighborhood of the
pixels into account.

3.4 Incorporating spatial class label context

In image processing, incorporating spatial gray level context into the feature vector is
readily done by not only considering the actual gray level in that pixel as a feature,
but by taking additional gray levels of neighboring pixels into account, or by adding
large-scale filter outputs to the feature vector. However, on the class label side there is
also contextual information available. Although two pixels could belong to the same
class—and thus have the same class label, the configuration of class labels in their
neighborhood can differ very much. LDA and other dimension reduction techniques,
do not take into account this difference in spatial configuration, and only consider the
actual label of the pixel.

The trivial way to incorporate these differences into LDA would be to directly dis-
tinguish more thanK classes on the basis of these differences. Consider for example
the 4-neighborhood label configurations in Figure 1. In aK = 2-class case, this 4-

l1
l1 l1 l1

l1
(a)

l2
l2 l2 l2

l2
(b)

l2
l1 l1 l2

l1
(c)

l1
l2 l1 l1

l2
(d)

Fig. 1. Four possible class labellings in case a four-neighborhood context is considered. For this
two-class problem the total number of possible contextual labellings equals 25 = 32.

neighborhood could attain a maximum of 25 = 32 different configurations (of which
only four are displayed in the figure). These could then be identified as being different



classes. Say we haveM of them, then every configuration possible would get its own
uniqueM-dimensional standard basis vector (as in Subsection 3.3) and one could sub-
sequently perform LDA based on these classes, in this way indirectly taking more than
a single class label into account when determining a dimension reducing matrixL .

However, identifying every other configuration with a different class seems too
crude. When two neighborhood label configurations differ in only a single pixel la-
bel, they should be considered more similar to each other then two label configurations
differing in half of their neighborhood. Therefore, in our CCCP approach, a class label
vectoryi is not encoded as a null vector with a single one in it, 1.e., a standard basis
vector, but as a 0/1-vector in which the central pixel label and every neighboring label
is encoded as aK-dimensional (sub)vector. Returning to our 2-class example from Fig-
ure 1, the four label vectors that would give the proper encoding of the class labelling
within these 4-neighborhoods (a), (b), (c), and (d) are

1
0

1
0

1
0

1
0

1
0
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0
1

0
1

0
1

0
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0
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0
1

1
0

1
0

0
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0


,and



1
0

0
1

1
0

1
0

0
1


. (5)

The five pixels (the four pixels in the neighborhood and the central pixel) are traversed
left to right and top to bottom. So the first two entries of the four vectors correspond
to the labelling of the top pixel and the last two entries correspond to the bottom pixel
label.

Note that the label vectors are 10-dimensional, i.e., per pixel from the neighborhood
(five in total) a sub-vector of size two is used to encode the two possible labellings per
pixel. In general, ifP is the number of pixels in the neighborhood including the central
pixel, these(KP)-dimensional vectors containP ones, and(K − 1)P zeros, because
every pixel belongs to exactly one ofK classes, and every pixels is thus represented by
a K-dimensional sub-vector. In the foregoing example whereK = 2 andP = 5, there
are 5 ones and 5 zeros in the complete vector, and 1 one and 1 zero per sub-vector.

When taking the contextual label information into account in this way, gradual
changes in the neighborhood structure are appreciated. In Figure 1, configurations (a)
and (b) are as far from each other as possible (in terms of e.g. Euclidean or Hamming
distance, cf. the vectors in (5)), because in going from one configuration to the other, all
pixel sites have to change their labelling. Comparing a different pair of labellings from
Figure 1 to each other, we see that their distance is less than maximal, because it needs
less permutations to turn one contextual labelling into the other.

We propose the numeric class label encoding described above for incorporating
contextual class label information into the CCA, resulting in the canonical correlation



projection, CCCP, that can explicitly deal with gray value context—through the feature
vectorsxi—as well as with class label context—through our numeric class label encod-
ing represented by the vectorsyi . Note that CCCP encompasses classical LDA. Taking
no class label context into account but only the class label of the central pixel clearly
reduces CCCP to LDA.

3.5 Reduction to more thanK−1K−1K−1 dimensions

We return to one of the main drawbacks of LDA already mentioned: the fact that LDA
cannot reduce the dimensionality to more thanK−1, i.e., the number of classes minus
1. In many segmentation tasksK is not higher than 2 or 3, in which case LDA can only
extract 1 or 2 dimensions. Starting with a high-dimensional image feature space, it is
hardly to be expected that all relevant information is captured in this subspace.

The CCCP alleviates this limitation. The maximum number of canonical variates
that can be extracted through CCA equals min{rank(SX), rank(SY)}. When dealing
with as many as or fewer classes than the feature dimensionality, i.e.,K ≤ n, the limiting
factor in the dimensionality reduction using LDA is the matrixSY which rank is equal
to (or even smaller than)K−1. However, by extending the class label context, the rank
of SY increases and can even get larger than rank(SX).

So in general, CCCP can provide more canonical variates than classical LDA by in-
corporating more class label context. And consequently, for CCCP the resulting feature
dimensionality can be larger thanK−1. In the experiments in Section 4, it is shown
that this can significantly improve the segmentation results.

3.6 The CCCP algorithm

The CCCP technique is summarized. A reduction ofn-dimensional image data tod
dimensions is considered.

– define what (contextual) image feature information to use (e.g. which filters), and
which neighboring pixels to take for the class label context

– determine from the train images and associated segmentations the gray level feature
vectorsxi

– determine from the same data the class label feature vectorsyi , i.e., determine for
every pixel in the context its standard basis vector describing its class label and
concatenate all these vectors

– estimate the covariance matricesSXX, SXY, andSYY

– do an eigenvalue decomposition of the matrixSX := S−1
XXSXYS−1

YYSt
XY from (3)

– take thed rows of thed× n linear dimension reducing transformation matrixL
equal to thed eigenvectors associated to thed largest eigenvalues

– transform allxi usingL to Lx i

4 Illustrative Experiments

This section exemplifies the theory by a simple illustrative example. The section is
not intended to present a full-fledged state-of-the-art solution to the task, but merely to



Fig. 2. The left image displays a typical PA chest radiograph as used in our experiments. The
right image shows its expert lung field segmentation. The background is black, both lung fields
are in different shades of gray.

illustrate the possible improvements in performance when employing the CCCP instead
of the original LDA or no dimensionality reduction at all. For this reason, the task
considered is a lung field segmentation task in chest radiographs, which is based on
a simple pixel classification technique. A segmentation scheme solving this problem
properly may be based on snakes, active shape models, or some kind of Markov random
field, taking more global contextual and/or geometric information into account (cf. [8]).

4.1 Chest radiograph data

The data used in the experiments consists of 20 standard PA chest radiographs taken
from a tuberculosis screening programm. The size of the sub-sampled and digitized
images equals 128×128. An examples of a typical chest radiographs is shown in Figure
2. The task is to segment, both lung fields.

In addition to the radiographs, the associated ground truth is given, i.e., in these
images, the the lung fields are manually delineated by an expert and the delineation is
converted to a 3-class pixel labelling. An example image is given in Figure 2 also.

4.2 Experimental setup

In all experiment, 10 images were used for training and 10 for testing. The total number
of feature vectors equals 20· (128−12)2 = 269,120 and train and test set both contain
half of it. Note that pixel within a distance of 6 pixels from the border are not taken into
account to avoid boundary problems in building up the contextual gray level features
(see below).

Experiments were conducted using a nonparametric 1 nearest neighbor (1NN) clas-
sifier. We chose to use a 1NN classifier for its simplicity and because it offers suitable
baseline results which makes a reasonable comparison possible [3, 7, 12]. Before the
1NN classifier was trained, the within-class covariance matrixSW was whitened (cf.
Subsection 3.1) based on the train data [7].



The variables in our experiments were the contextual class label information, and
the dimensionalityd to which the data is to be reduced. The contextual class label
information belonging to one pixelpi is defined by all pixels coming from within a
radius ofr pixels frompi . Experiments were performed withr ∈ {0,2,3}; r = 0 means
that only the central label belonging topi is taken into account (equal to classical LDA),
r = 2 results in 13 contextual labels, andr = 3 in 29 contextual labels.

As contextual image features, we simply took the gray levels from neighboring pix-
els into account, so no filtering or other preprocessing is performed. The contextual
information of pixelpi consisted of all raw gray values within a radius of 5 from this
pixel. In addition, the x and y coordinates were added to the image feature vector, which
final dimensionality totals 81 + 2 = 83. (Choosing to set the radius for the contextual
gray level information to 5 is based on a small pilot experiment using LDA. LDA per-
formed best with these settings.)

The dimensionalityd to reduce to were in the set{1,2,4,11,22,37,56,83}. N.B.
settingd equal to 83 means no dimensionality reduction is performed.

Using the aforementionedd, image features and contextual class label features, the
train set was used for determining the CCCP and training the 1NN classifier. Subse-
quently, using the test set, we determined the pixel classification error.

4.3 Results
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Fig. 3. The black dashed horizontal line indicates the performance of the pixel classification
scheme if no dimensionality reduction is employed and the full 83-dimensional feature vector
is used in the segmentation. The black solid line is the classification error obtained when using
LDA. The gray lines give the performance for the two different instances of CCCP. The dark
gray line uses a contextual radius of 2, while the light gray line uses a radius of 3. Their pixel
classification error is plotted against feature dimensionalityd. The optimal classification errors
are 0.22, 0.24, 0.12, and 0.11, respectively.

Figure 3 gives the results obtained by LDA, CCCP and no dimensionality reduc-
tion. Note that for LDA (solid black line), the dimensionality can only be reduced to
1 or 2, because the number of classesK is 3 (i.e., left lung field, right lung field, or



background). Note also the peaking behavior [4, 12] that is visible in the plots of the
CCCP results.

Both instances of CCCP clearly outperforms LDA and they give a dramatic im-
provement over performing no dimensionality reduction as well. It should be noted,
though, that CCCP does not outperform LDA for every dimensionalityd.

Figure 4 gives for the example image in Figure 2 the segmentation obtained by the
optimal LDA (left), the segmentation obtained by the optimal CCCP (middle), and the
one obtained using no reduction (right). Comparing the three images, the main obser-
vations is that the CCCP-based segmentation gives much more coherent results than
the other segmentations. Furthermore, there seems to be less confusion between left
and right lung fields when CCCP is employed. The background classification error in
comparison with the result in the right image, however, seems to go up a bit when using
the CCCP approach. In the right image there are no misclassified background pixels, in
both other images there are.

Fig. 4. The segmentation with optimal LDA (d = 2) is depicted on the left, the one with optimal
CCCP in the middle (d = 11 andr = 3), and on the right is the segmentation obtained using no
dimensionality reduction.

5 Discussion and Conclusions

In this work we extended classical LDA—as a dimensionality reduction technique—
to incorporate the spatial contextual structure present in the class labelling. Our ex-
tension, called the canonical contextual correlation projection (CCCP), is based on a
canonical correlation formulation of LDA that enables the encoding of these spatial
class label configurations. Experiments on the task of segmenting the lung fields in
chest radiographs demonstrated that in this way significant improvement over LDA or
no dimension reduction is possible. Furthermore, these experiments show also that us-
ing a data-driven method for image segmentation—in which the dimension reduction
is an essential part, good results can be obtained without the additional utilization of
task-dependent knowledge. We expect that similar results hold in, for example, object
detection, object classification or some other discriminative tasks in which CCCP can
also be used to determine low-dimensional but still discriminative features.



Clearly, regarding the experiments, improving the segmentation results should be
possible. For example, by using more complex pattern recognition techniques that can
also handle contextual class label information in their classification scheme. Typically,
such scheme employs a Markov random field approach, or something closely resem-
bling this [10, 15, 17]. Here CCCP could also be a valuable tool in another way. Due
to the iterative nature of these schemes they often are rather slow. In part, this may be
attributed to the large contextual neighborhoods that are taken into account. Lowering
the dimensionality of these neighborhoods can, in addition to improving the error rate,
speed up the iterative process considerably.

An interesting way to further improve the dimensionality reduction scheme is the
development of nonlinear CCCP. This is for example possible via a CCA-related tech-
nique called optimal scoring [9], which is, among other things, used for extending LDA
to nonlinear forms. Nonlinear dimensionality reduction can of course lead to a bet-
ter lower-dimensional representation of the image data, however the nonlinearity often
makes such approaches computationally hard. Nonetheless, CCCP does (via CCA) pro-
vide a proper framework for these kind of extensions.

In conclusion, CCCP provides a general framework for linearly reducing contextual
feature data in a supervised way, it is well capable of improving LDA and can be ex-
tended in several directions. It generalizes LDA by not only taking gray level context
into account, but incorporating contextual class label information as well. In a small
segmentation experiment, it was shown that CCCP can clearly give improvement per-
formance compared to LDA and no dimensionality reduction.
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